idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/16/2009 20:00

Neues Verfahren ermöglicht Steuerung von elektronischen Materialeigenschaften

lic. phil. Hans Syfrig Öffentlichkeitsarbeit
Universität Basel

    Forschenden am Swiss Nanoscience Institute ist es erstmals gelungen, dünne Schichten mit steuerbaren elektronischen Eigenschaften herzustellen. Diese Entdeckung könnte für zukünftige Anwendungen in der Sensorik und der Computertechnologie von grosser Bedeutung sein. Die Arbeiten des internationalen Forscherteams der Universitäten Basel und Heidelberg sowie des Paul Scherrer Instituts werden im renommierten Wissenschaftsmagazin "Science" veröffentlicht.

    Gewöhnlich ist der elektrische Widerstand eines Materials ebenso wie sein spezifisches Gewicht und seine Farbe eine nicht steuerbare Materialeigenschaft. Forschenden um die Physikerin Dr. Meike Stöhr ist es nun gelungen, ein Verfahren zu entwickeln, mit dem zukünftig die elektronischen Eigenschaften an einer Oberfläche gezielt verändert werden können, darunter auch der Widerstand.

    Das interdisziplinäre Team aus Physikern und Chemikern hat eine Substanz entwickelt, die durch Erhitzen auf einer Kupferoberfläche ein stabiles zweidimensionales Netzwerk mit Nanometer-kleinen Poren bildet. Durch die Wechselwirkung dieses Netzwerks mit dem an der Metalloberfläche vorhandenen Elektronengas kommt es zu zwei Effekten: Unterhalb des Netzwerks werden die Elektronen verdrängt, während sich in den Poren kleine "Elektronenseen" in sogenannten Quantentöpfen bilden.

    Grosses Potenzial für die Materialforschung
    Durch Veränderung sowohl des Porenabstands als auch des Porendurchmessers besteht die Möglichkeit, die Eigenschaften des Materials gezielt zu verändern. Eine weitere Möglichkeit zur Veränderung bietet sich durch das Befüllen der Poren mit Gast-Molekülen an. Dadurch würde ein direkter Zugriff auf die Eigenschaften ermöglicht, welche von den Elektronen bestimmt werden, wie z.B. die Leitfähigkeit, die Reflektivität oder die katalytischen Eigenschaften der Oberfläche. Auf diese Weise können Materialien mit neuen steuerbaren Eigenschaften entstehen.

    Die zugrunde liegenden physikalischen Vorgänge können durch den Vergleich des Elektronengases mit Wasserwellen an folgendem Beispiel nachvollzogen werden: An einem auf der Oberfläche schwimmenden Hindernis werden Wasserwellen reflektiert. Für ein Hindernis in Form eines Bienenwaben-förmigen Netzes können sich in den einzelnen Waben stehende Wasserwellen ausbilden. So entsteht je nach Struktur und Grösse des Netzes ein charakteristisches Wellenmuster. Analog hierzu entstehen im oben beschriebenen neuen Material charakteristische Elektronenwellen aufgrund der Wechselwirkung des molekularen Netzwerks mit den Elektronen der Metalloberfläche.

    Poren-Netzwerke sind Kandidaten für neue Metamaterialien. Dies sind Stoffe, die aufgrund ihrer speziellen periodischen Struktur optische bzw. elektronische Eigenschaften haben, die durch die Steuerung der Eigenschaften der einzelnen Komponenten gezielt verändert werden können. Im vorliegenden Fall sind es die elektronischen Eigenschaften der Oberfläche, welche durch die Grösse und die Eigenschaften der selbstorganisierten Nano-Poren bestimmt werden.

    Die Universität Basel und das Paul Scherrer Institut sind Teil des langfristig angelegten und vom Kanton Aargau finanzierten Swiss Nanoscience Institute (SNI). Zum SNI gehören das 2001 gegründete Netzwerk des Nationalen Forschungsschwerpunkts Nanowissenschaften sowie das 2006 neu geschaffene, vom Kanton Aargau finanzierte Argovia-Netzwerk. Wichtiger Partner im vorliegenden Projekt war die Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts.

    Weitere Informationen
    http://www.nanoscience.ch/stoehr

    Weitere Auskünfte
    Dr. Meike Stöhr, Swiss Nanoscience Institute, Tel. ++41 (0) 61 267 37 59, E-Mail: Meike.Stoehr@unibas.ch
    Dr. Thomas Jung, Paul Scherrer Institut, Tel. ++41 (0) 56 310 45 18, Handy: 079 534 14 49, E-Mail: Thomas.Jung@psi.ch
    Hans Syfrig, Leiter Öffentlichkeitsarbeit, Universität Basel, Tel. ++ 41 (0) 61 267 30 16, E-Mail: Hans.Syfrig@unibas.ch

    Verwandte Seiten
    Swiss Nanoscience Institute an der Universität Basel >
    http://www.nccr-nano.org/nccr/

    Nanolab an der Universität Basel >
    http://monet.physik.unibas.ch/gue/nanolab/

    Anorganische Chemie der Universität Heidelberg >
    http://www.gade.uni-hd.de/

    Molekulare Nanowissenschaften am PSI >
    http://lmn.web.psi.ch/molnano/

    Originalbeitrag
    Jorge Lobo-Checa, Manfred Matena, Kathrin Müller, Jan Hugo Dil, Fabian Meier, Lutz H. Gade, Thomas A. Jung, and Meike Stöhr.
    Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface
    Science 16 July 2009 [DOI: 10.1126/science.1175141]

    Bildmaterial
    http://www.unibas.ch > Bilddatenbank


    Images

    Molekulares Netzwerk auf einer Metalloberfläche, aus dem ein elektronisches Metamaterial hervorgeht.
    Molekulares Netzwerk auf einer Metalloberfläche, aus dem ein elektronisches Metamaterial hervorgeht.


    Criteria of this press release:
    Chemistry, Energy, Materials sciences, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).