idw - Informationsdienst
Wissenschaft
Muscheln und Schnecken bilden Schalen in unterschiedlichen Formen und Farben, manche fallen durch ihr schillerndes Perlmutt besonders auf. Wie diese Weichtiere die robusten und komplizierten Schalenstrukturen herstellen, hat ein internationales Forscherteam unter der Leitung des Göttinger Geobiologen Dr. Daniel J. Jackson am Beispiel der Muschel Pinctada maxima und der Schnecke Haliotis asinina untersucht. Überraschende Ergebnisse der molekularbiologischen Analysen sind: Beide Arten desselben Tierstammes haben offenbar unabhängig voneinander verschiedene genetische Lösungen für die Schalenbildung entwickelt.
Pressemitteilung Nr. 36/2010
Auf unterschiedlichen genetischen Wegen zu Schalen aus Perlmutt
Internationales Forscherteam untersucht Schalenbildung bei Auster und Meeresschnecke
(pug) Muscheln und Schnecken bilden Schalen in unterschiedlichen Formen und Farben, manche fallen durch ihr schillerndes Perlmutt besonders auf. Wie diese Weichtiere die robusten und komplizierten Schalenstrukturen herstellen, hat ein internationales Forscherteam unter der Leitung des Göttinger Geobiologen Dr. Daniel J. Jackson am Beispiel der Muschel Pinctada maxima und der Schnecke Haliotis asinina untersucht. Überraschende Ergebnisse der molekularbiologischen Analysen sind: Zum einen haben die beiden Arten desselben Tierstammes offenbar unabhängig voneinander verschiedene genetische Lösungen für die Schalenbildung entwickelt. Zum anderen entdeckten die Wissenschaftler bei der Analyse von Proteinen, die bei der Herstellung der Schalen eine Rolle spielen, bei beiden Arten ungewöhnliche Strukturen, die auch in Zusammenhang mit der Bildung von anderem elastischen Material wie zum Beispiel Spinnenseide bekannt sind. Die Forschungsergebnisse sind in der Online-Ausgabe des Fachjournals "Molecular Biology and Evolution" veröffentlicht worden.
Die zum Tierstamm der Weichtiere gehörenden Schnecken und Muscheln kommen in ganz unterschiedlichen Lebensräumen vor. H. asinina ist eine in warmen Meeren lebende Schnecke, deren perlmuttreiche Schale die Form einer Ohrmuschel hat und die deshalb auch tropisches Seeohr genannt wird. Die Südsee-Muschel P. maxima ist eine sehr große Auster, die weiße Perlen bildet und daher auch als "Silberlippige Perlauster" bezeichnet wird. Während die Tiere heranwachsen, sondern sie Kalziumkarbonat ab und bilden daraus die Schale.
Wissenschaftler nahmen bislang an, dass die verschiedenen Weichtiere für die Schalenbildung auf die gleichen Gene zurückgreifen. Das Forscherteam um Dr. Jackson fand dagegen heraus, dass die beiden untersuchten Arten nur weniger als zehn Prozent ihrer Gene teilen. Daraus folgern die Wissenschaftler, dass das genetische Repertoire, welches die Schalenbildung ermöglicht, bei den beiden Arten grundlegend verschieden ist. Sie vermuten, dass Muscheln und Schnecken im Laufe der Evolution für die Bildung ihrer Schalen unterschiedliche genetische Lösungen unabhängig voneinander entwickelt haben.
Bei der Analyse der unterschiedlichen Proteine in H. asinina und P. maxima stießen die Wissenschaftler auf ungewöhnliche Strukturen: Die Proteine haben sich wiederholende Abschnitte, sogenannte Domänen, die aus häufig aufeinanderfolgenden Aminosäuren bestehen. Jede der Domänen faltet sich zu einer unterschiedlichen räumlichen Struktur. Das Zusammenwirken dieser Domänen ist für die Gesamtfunktion eines Proteins entscheidend. "Die in den beiden Arten unterschiedlichen Proteine enthalten jeweils nur wenige der 20 möglichen Aminosäuren, die mehrfach aneinander gereiht werden und eine Sequenz bilden, die oft wiederholt wird", erläutert Dr. Jackson. Ähnliche Proteine sind in der Natur zum Beispiel in der Seide von Spinnen bekannt, in der eine hohe Elastizität erforderlich ist. Daher könnten sie in der Weichtierschale ebenfalls eine wichtige Rolle bei der Bildung stabiler und robuster Schalen spielen.
Die Ergebnisse der Wissenschaftler können helfen zu verstehen, wie Weichtiere die komplizierten Schalenstrukturen herstellen. Die gesammelten Daten könnten Materialwissenschaftlern auch bei Versuchen dienen, die stabile natürliche Keramik Perlmutt künstlich herzustellen.
Dr. Daniel J. Jackson hat seine Arbeit in einem Forschungsteam an der University of Queensland in Australien begonnen; seit Herbst 2008 setzt er seine Forschung als Juniorprofessor an der Universität Göttingen fort. Am Courant Forschungszentrum "Geobiologie", das aus Mitteln der Exzellenzinitiative gefördert wird, hat er die Nachwuchsgruppe "Evolution der Metazoen" aufgebaut. Dort untersuchen Wissenschaftler nun zusätzlich die Süßwasserschnecke Lymnaea stagnalis und kombinieren ihre Analysen mit Genomdaten der Metazoen aus Internet-Datenbanken.
Originalveröffentlichung:
Daniel J. Jackson et al.: Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, doi:10.1093/molbev/msp278.
Hinweis an die Redaktionen:
Bildmaterial kann in der Pressestelle angefordert werden.
Kontaktadresse:
Juniorprofessor Dr. Daniel J. Jackson
Georg-August-Universität Göttingen
Courant Forschungszentrum "Geobiologie"
Nachwuchsgruppe "Evolution der Metazoen"
Goldschmidtstraße 3-5, 37077 Göttingen
Telefon (0551) 39-14177, Fax (0551) 39-7918
E-Mail: djackso@uni-goettingen.de
http://www.uni-goettingen.de/en/102705.html
Schale mit Perlmutt: Schnecke Haliotis asinina.
Foto: Uni Göttingen
None
Schale mit Perlmutt: Muschel Pinctada maxima.
Foto: Uni Göttingen
None
Criteria of this press release:
Biology, Geosciences, Oceanology / climate
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).