idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/28/2010 09:58

Intensely colored or brighter plumage: a matter of environment and upbringing

Dr. Sabine Spehn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Ornithologie

    In contrast to most existing statements in scientific textbooks, yellow and orange plumage colors are a combination of pigment based and structural colors. This was found by researchers of the Max Planck Institute of Ornithology in Seewiesen and colleagues. The intensity of coloration is controlled by pigments and the shine of the feathers depends on their structure (published online in the “American Naturalist”, May 14 2010).

    Alain Jacot, researcher of the Max Planck Institute for Ornithology in Seewiesen and colleagues analyzed the yellow coloring of breast feathers of great tits. Like other birds with their splendid red, orange or yellow plumage, the color of breast feathers of great tits is based on carotenoid pigments. These are natural colorant substances, supplied by food. Research mostly divides plumage color into pigment based and structural color. Structural color develops from the specific structure reflecting light (i.e. keratin structure). “We want to know whether plumage color consist of pigment based or structural colors” says Jacot. The researchers combined fieldwork with lab work and computer simulation. In the field study, the researchers changed the environmental conditions by providing half of the brood with additional carotenoids and by manipulating the brood size - i.e., the number of siblings per brood. “We know from other studies that both factors affect the development of nestlings,” says Jacot.

    To alter brood size, the researchers swapped partially the newly hatched chicks among nests and so broods with few or many chicks were created. Within the next days, half of the chicks of a brood were repeatedly fed with small carotenoid-filled pellets while the other nestlings received a placebo pellet. Shortly before the nestlings fledged, the researchers plucked a couple of breast feathers, which were analyzed at a later stage in the lab.

    Nestlings that received carotenoid-pellets developed a more intense yellow feather coloration. In contrast, nestlings from small broods had much brighter feathers, while there was no effect on how yellow the feathers were. “We demonstrate in our study that the brightness of a feather depends on its structure and not on the amount of incorporated carotenoid pigments”, says Jacot. “These results show that most, if not all, yellow, orange, and red carotenoid-based colors also incorporate a structural component”. The longstanding division of plumage colors into structural and pigment-based colors is therefore not correct, corresponding to the researchers.

    This study also shows that a single feather may be a multi-component signal that reflects different aspects including growth conditions or health state. A great tit with a very bright plumage most likely grew up with few siblings and one with very yellow breast feathers grew up in a territory with carotenoid-rich food. The question why birds from large broods have a less shiny plumage is still unsolved. “It is possible that the nestlings growing up in large broods have to fight more for their food, which causes more abrasion on their feathers” says Jacot. Another reason could be that nestlings from small broods are better fed and therefore are able to develop a thicker feather structure reflecting more light and thus look glossier. [AJ, SP]

    Original work:
    Alain Jacot, Cristina Romero-Diaz, Barbara Tschirren, Heinz Richner, and Patrick S. Fitze, Dissecting carotenoid from structural components of carotenoid-based coloration: a field experiment with great tits (Parus major)
    The American Naturalist. Published Online May 14 2010
    DOI: 10.1086/653000

    Contact:
    Dr. Alain Jacot
    Max Planck Institute for Ornithology, Seewiesen, Department Behavioural Ecology and Evolutionary Genetics
    Now: Swiss Ornithological Station, Local Office Wallis, CH-3970 Salgesch
    Phone: +41 (0)79 77 44 262
    E-mail: alain.jacot@vogelwarte.ch

    Dr. Sabine Spehn
    Max Planck Institute for Ornithology, Seewiesen, Public Relations
    Phone +49 (0)8157 932 421
    Email: sspehn@orn.mpg.de


    Images

    Young Great Tit (Parus major)
    Young Great Tit (Parus major)
    Image: Jan Wijmenga
    None


    Criteria of this press release:
    Biology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).