idw - Informationsdienst
Wissenschaft
New impulses with the super-resolution microscopy for the University of Rostock
Scientists at the Reference- and Translation Center for Cardiac Stem Cell Therapy at the University of Rostock (RTC) are now able to visualize molecules with a microscope system with a localization accuracy of up to 10 nm. This is achieved with a new product from Carl Zeiss MicroImaging GmbH, the microscope ELYRA PS.1. Besides Osaka the RTC Rostock is going to be the first user worldwide of a series system based on this technology. The project is funded by the Federal Ministry of Education and Research (BMBF).
„Our research deals with the efficacy, safety, and the further development of stem cell therapies against heart diseases. ELYRA will support our research “ Prof. Gustav Steinhoff, head of the RTC Rostock, explains. This microscope offers new interesting possibilities, especially for gene-technical and nano-technological approaches with stem cells. To improve the therapeutical efficacy or the survivability after transplantation the cells are genetically modified by using gene transfer systems. The gene transfer is currently conducted with a novel method whose mechanism has not been fully understood yet. Neither, it is known whether the modified cells are exposed to unexpected side effects.
With ELYRA PS.1, cell processes in live cells can now be observed and documented on a molecular level for the first time. Before that, it had been possible to image cellular structures with electron microscopy with a spatial resolution of up to 10 nanometers; however, living cells were destroyed in the course of the imaging procedure.
Combining two innovative technologies, SR-SIM und PALM, the ELYRA PS.1 is able to provide super-resolution which has not been available in the fluorescence microscopy technology until today. A doubling of the resolution of a conventional fluorescence microscopy has been achieved with the SR-SIM (Super-resolution Structured Illumination Microscopy) technology. The necessary labeling can be performed with all common fluorescent dyes. The PALM (Photoactivated Localization Microscopy) technology offers a localization accuracy of up to 10 nm using e.g. shiftable fluorescent proteins. The ELYRA PS.1 at the RTC Rostock combines the super-resolution technology with the LSM 780, which is the latest and most effective confocal Laser Scanning Microscope from Carl Zeiss.
contact:
University of Rostock
Prof. Dr. Gustav Steinhoff
Center for Cardiac Stem Cell Therapy at the University of Rostock (RTC), Director
Fon: +49 (0)381 494 61 00
Mail: gustav.steinhoff@med.uni-rostock.de
University of Rostock
Press+Communication
Dr. Ulrich Vetter
Fon: +49 (0)381 498 1013
Mail: ulrich.vetter@uni-rostock.de
Legend: Evgenya Delyagina, researcher at the RTC Rostock, will examine genetically modified stem cel ...
Photo: © Zeiss/RTC
None
Criteria of this press release:
Journalists, Scientists and scholars
Medicine
transregional, national
Transfer of Science or Research
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).