idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/22/2011 18:00

Dem Bewegungssehen auf der Spur

Dr. Stefanie Merker Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie

    Dieses Phänomen hat sicher jeder schon einmal bemerkt: Ein Tier hebt sich erst dann vom Hintergrund ab und wird sichtbar, wenn es sich bewegt. Das liegt daran, dass wir uns stark auf unsere Augen zur Orientierung verlassen und das Erkennen von Bewegungen besonders gut ausgeprägt ist. Doch was genau passiert dabei im Gehirn? Wie sind die Nervenzellen verschaltet, damit Bewegungen als solche wahrgenommen werden? Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben nun herausgefunden, dass dazu im Fliegenhirn zwei verschiedene Bewegungsdetektoren nötig sind. (Neuron, 23. Juni 2011)

    Dass wir Bewegungen erkennen können, mag trivial klingen. Wir erkennen ja Bewegungen, sobald unsere Augen geöffnet sind. Dahinter stehen jedoch hoch komplexe Nervenzell-Schaltkreise, die bisher erst ansatzweise verstanden sind. Diese Schaltkreise bis auf ihre einzelnen Zellenbestandteile zu entschlüsseln, das ist das Ziel der Neurobiologen um Alexander Borst am Max-Planck-Institut für Neurobiologie. Ihr Forschungsobjekt ist jedoch nicht der Mensch, mit seinen rund hundert Milliarden Nervenzellen, sondern die winzige Fruchtfliege Drosophila.

    Fliege und Mensch – kein großer Unterschied

    Das Gehirn der Fruchtfliege misst zwar weniger als einen halben Millimeter, doch es ist äußerst effizient und mit seinen rund hunderttausend Nervenzellen relativ "überschaubar". So scheint es den Wissenschaftlern hier möglich, die Nervenzell-Schaltkreise des Bewegungssehens in ihre Bestandteile zu zerlegen. Das ist auch für den Menschen interessant, denn so groß ist der Unterschied zwischen Mensch und Fruchtfliege gar nicht. Erst vor kurzem konnten die Martinsrieder Wissenschaftler zeigen, dass Fruchtfliegen optische Informationen ganz ähnlich verarbeiten, wie alle bisher untersuchten Wirbeltiere: Informationen werden gleich nach den Fotorezeptoren in verschiedene Bildkanäle aufgespalten. Während die Fotorezeptoren jede Lichtveränderung wahrnehmen, leiten einzelne Nervenzellen der nächsten Schicht nur noch "Licht-an" (ON) oder "Licht-aus" (OFF) Veränderungen weiter. Doch wie ist es möglich, hieraus Bewegungen zu errechnen?

    Leuchtreklame im Fliegenkino

    Um dem Bewegungssehen auf den Grund zu kommen, täuschten die Neurobiologen die Fliegenwahrnehmung mit einer Scheinbewegung. In einer Art Fliegenkino sahen die Tiere nacheinander erst einen und dann einen zweiten Streifen aufblitzen oder dunkler werden. Jeder, der zum Beispiel schon einmal die "laufenden" Leuchtreklamen am New Yorker Times Square gesehen hat, weiß, dass durch das aufeinanderfolgende An- und Ausschalten von stationären Lampen der Eindruck einer Bewegung entsteht. Das ist auch für Fliegen nicht anders.

    Die Wissenschaftler wählten die Breite der Streifen im Fliegenkino so aus, dass jeweils nur wenige Fotorezeptoren auf das Gesehene reagierten. Die Fliege sieht eine Scheinbewegung, wenn erst ein Fotorezeptor und dann der daneben liegende eine ON- oder eine OFF-Lichtveränderung wahrnimmt. So würden OFF-OFF-Impulse zum Beispiel das Vorbeiziehen einer dunklen Kante anzeigen. Was passiert jedoch, wenn die benachbarten Fotorezeptoren ON-OFF oder OFF-ON-Veränderungen melden? Wird die Bewegung von zwei Bewegungsdetektoren (einer für ON-ON und einer für OFF-OFF) oder von vier Detektoren (einer für jede Kombination) errechnet?

    Die Aufgabe klingt fast zu kompliziert für nur zwei Nervenzell-Detektoren. Auf der anderen Seite ist der Aufbau und die Versorgung von vier Schaltkreisen kostspieliger als von zweien, sodass zwei Bewegungsdetektoren von der Evolution bevorzugt werden sollten – wenn es denn machbar ist. Um dies herauszufinden, zeichneten die Neuro-biologen die elektrischen Antworten der auf Bewegungen reagierenden Nerven-zellen auf, während die Fliege die sich „bewegenden“ Streifen im Fliegenkino sah. Zusätzlich führten sie vielfältige Computersimulationen zur Vorhersage und Analyse der Ergebnisse durch. All diese Untersuchungen brachten ein eindeutiges Ergebnis: Die aufgetrennten Informationen über ON- und OFF-Kontrastveränderungen fließen in nur zwei Bewegungsdetektoren.

    Die Zellen hinter dem Detektor

    "Dieses Ergebnis ist ein Durchbruch, denn seit rund 50 Jahren diskutieren Wissenschaftler darüber, wie viele Detektoren notwendig sind, um Bewegungen zu erkennen", freut sich Hubert Eichner über die Aussage seiner Studie. Nachdem die Anzahl der Bewegungsdetektoren nun geklärt ist, können die Neurobiologen gezielt nach den Zellen suchen, aus denen diese beiden Detektoren bestehen. "Und wir wissen auch schon ziemlich genau, wo wir diese finden können", so Alexander Borst. Die Chancen stehen nicht schlecht, dass die Gehirnanalyse dieser Fliegenwinzlinge in Zukunft dazu beiträgt, dass wir auch unsere eigene Wahrnehmung von Bewegungen besser verstehen.

    Originalveröffentlichung:
    Hubert Eichner, Maximilian Jösch, Bettina Schnell, Dierk F. Reiff & Alexander Borst
    Internal structure of the fly elementary motion detector
    Neuron, 23. Juni 2011

    Kontakt:
    Dr. Stefanie Merker
    Presse- und Öffentlichkeitsarbeit
    Max-Planck-Institut für Neurobiologie, Martinsried
    Tel.: 089 8578 - 3514
    E-Mail: merker@neuro.mpg.de
    www.neuro.mpg.de


    More information:

    http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie -> Hier finden Sie auch eine erklärende Grafik zu dieser Pressemitteilung
    http://www.neuro.mpg.de/english/rd/scn - Webseite der Abteilung von Prof. Dr. Alexander Borst


    Images

    Während die roten L1-Zellen nur Informationen über „Licht an“ (ON) Kontrastveränderungen weitergeben, informieren die grünen L2-Zellen die nachfolgenden Zellen nur über „Licht aus“ (OFF)Veränderungen.
    Während die roten L1-Zellen nur Informationen über „Licht an“ (ON) Kontrastveränderungen weitergeben ...
    Foto: MPI für Neurobiologie / Jösch
    None


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, all interested persons
    Biology
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).