idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/22/2011 17:18

“Heat-Loving” Fungus Supplies the DNA to Rebuild a Central Structure of Nuclear Envelope

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    By exploiting the DNA of a thermophilic fungus that grows optimally between 50 and 60 degrees Celsius Heidelberg scientists have reconstructed a central piece of the cell's nuclear envelope in the test-tube. This structure is part of the nuclear pore complex, which mediates the exchange of material between the cell nucleus and its surrounding compartment, the cytoplasm.

    Press Release
    Heidelberg, 22 July 2011

    “Heat-Loving” Fungus Supplies the DNA to Rebuild a Central Structure of Nuclear Envelope
    Heidelberg scientists decipher genome of the thermophilic eukaryote Chaetomium thermophilum

    By exploiting the DNA of a thermophilic fungus that grows optimally between 50 and 60 degrees Celsius Heidelberg scientists have reconstructed a central piece of the cell's nuclear envelope in the test-tube. This structure is part of the nuclear pore complex, which mediates the exchange of material between the cell nucleus and its surrounding compartment, the cytoplasm. To achieve their goals, researchers from Heidelberg University and the European Molecular Biology Laboratory (EMBL) sequenced the genome of the thermophilic eukaryote Chaetomium thermophilum and identified all the proteins of the nuclear pore transport channel. This breakthrough enabled them to assemble a long sought-after central pillar of the nuclear pore. The findings reported by Prof. Dr. Ed Hurt and Dr. Peer Bork have been published in „Cell“ (22 July 2011).

    A very prominent development in the evolution of a eukaryotic cell was the formation of a nuclear envelope around the genetic information, the chromosomes, which formed a barrier and hindered exchange of material between the nucleus and the cytoplasm. However, nuclear pore complexes have co-evolved as transport channels in the nuclear envelope to allow traffic between these two cellular compartments. Each nuclear pore complex is composed of about 30 different components called nucleoporins or Nups, which exist in many copies so that ca. 500 subunits build up this complex nano-machine.

    Previously, the core structure of the nuclear pore complex was unknown, since it was difficult to reconstruct this assembly outside of the cell, due to the instability of isolated nuclear pore components. Thus, Prof. Hurt and his team sought to utilize thermostable nuclear pore building blocks from a thermophilic eukaryote to foster biochemical reconstitution. It is well known that proteins derived from heat-loving bacteria, which can still grow at temperatures above 100 degrees Celsius, are extremely robust. Notably, such exotic organisms also exist in the kingdom of eukaryote life. One example is Chaetomium thermophilum, a filamentous fungus, involved in the decomposition of plant material, a biological process generating heat as high as 70 degrees Celsius.

    At Heidelberg University Biochemistry Center, Prof. Hurt and his team have deciphered the entire DNA sequence of the thermophilic fungus consisting of approximately 28 million DNA bases. Dr. Bork and his research group at the European Molecular Biology Laboratory have annotated the genome sequence and identified all the proteins in this organism, more than 7,000. Among them were the 30 Nups of the nuclear pore complex. By using these thermophilic Nups, Ed Hurt's team finally succeeded in reconstituting a central structure of the nuclear pore complex in the test-tube. Prof. Hurt and Dr. Bork are confident that their findings will foster the development of this eukaryotic thermophile as a model organism to study complicated eukaryotic molecular machines.

    For more information, go to http://www.uni-heidelberg.de/zentral/bzh/hurt.

    Original publication
    Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P. & Hurt, E: Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile, Cell 146, 277-289, July 22, 2011, doi:10.1016/j.cell.2011.06.039

    Contact
    Prof. Dr. Ed Hurt
    Heidelberg University Biochemistry Center
    phone: +49 6221 544173
    ed.hurt@bzh.uni-heidelberg.de

    Communications and Marketing
    Press Office, phone: +49 6221 542311
    presse@rektorat.uni-heidelberg.de


    Images

    Model of the nuclear pore complex reconstituted with "Nup bricks" from the Chaetomium thermophilum
    Model of the nuclear pore complex reconstituted with "Nup bricks" from the Chaetomium thermophilum
    Image: Heidelberg University Biochemistry Center
    None


    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).