idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/23/2011 09:30

In einem neuen Computermodell schwächt der Sonnenwind das Magnetfeld des innersten Planeten

Ulrike Rolf Presse und Kommunikation
Technische Universität Braunschweig

    Merkurs Magnetfeld – im Keim erstickt

    Merkur, der sonnennächste und mit einem Durchmesser von 4900 Kilometern der kleinste aller acht Planeten, gleicht seinem Äußeren nach eher dem Mond als der Erde. Allerdings besitzt er wie diese als einziger Gesteinsplanet ein globales Magnetfeld. Warum jedoch ist es deutlich schwächer als das irdische? Wissenschaftler der Technischen Universität Braunschweig sowie des Max-Planck-Instituts für Sonnensystemforschung präsentieren jetzt eine neue Erklärung: Demnach soll der Sonnenwind dem inneren Dynamoprozess Merkurs entgegenwirken und auf diese Weise das Magnetfeld abschwächen.

    Planetare Magnetfelder werden durch Strömungen in den heißen, flüssigen Eisenkernen der Planetenerzeugt. Messungen von Mariner 10 in den Jahren 1974/75 haben gezeigt, dass auch Merkur ein Magnetfeld besitzt. Nach den Standardmodellen sollte der Dynamoeffekt in den Metallkernen der beiden Planeten ähnliche Feldstärken erzeugen. Merkurs Magnetfeld ist jedoch etwa 150-mal schwächer als jenes der Erde. Das hat die Nasa-Raumsonde Messenger jetzt bestätigt.

    Wie lässt sich die große Diskrepanz in der Feldstärke erklären? Diese Frage hat nun eine Gruppe um Karl-Heinz Glaßmeier von der Technischen Universität Braunschweig beantwortet. Eine große Rolle spielt dabei der Sonnenwind – ein ständig wehender Strom aus geladenen Teilchen. Mit einem mittleren Sonnenabstand von nur rund einem Drittel des Erdabstandes ist Merkur diesen Partikeln besonders stark ausgesetzt.

    „Wir müssen uns klarmachen, dass Merkur mit dem ihn umgebenden Sonnenwind eine enge Wechselwirkung eingeht“, sagt Daniel Heyner, Erstautor des im Wissenschaftsmagazin Science erschienenen Artikels und Doktorand an der International Max Planck Research School in Katlenburg-Lindau. Das führe zu starken elektrischen Strömen in der Magnetosphäre des Planeten, deren Magnetfelder dem inneren Dynamoprozess entgegenwirken.

    Die neuen Computermodelle zeigen, dass ein auf diese Weise rückgekoppelter Dynamo tatsächlich möglich ist. „Derartige Simulationen des Dynamoprozesses sind die einzige Möglichkeit, gewissermaßen in den Eisenkern hineinzuschauen und Vorhersagen zur Stärke und Struktur des Magnetfeldes zu machen“, sagt Johannes Wicht vom Max-Planck-Institut für Sonnensystemforschung, der mit seinem Modell wesentlich zu den Ergebnissen der Studie beigetragen hat. Die Ergebnisse zeigen eindeutig, dass die Rückkopplung letztlich zu dem schwachen Magnetfeld führt. „ Der Dynamoprozess im Merkurinnern wird durch die Wechselwirkung fast im Keim erstickt“, erläutert Glaßmeier.

    Gespannt warten die Forscher der TU Braunschweig und des Max-Planck-Instituts für Sonnensystemforschung auf die weiteren Magnetfeldmessungen der Raumsonde MESSENGER sowie auf die zukünftigen Beobachtungen der beiden Satelliten der europäisch-japanischen Mission BepiColombo. Vom Jahr 2020 an wird mit einem von der TU Braunschweig entwickelten Instruments Merkurs Magnetfeld mit großer Präzision vermessen. Mit diesen neuen Daten lässt sich diese faszinierende Idee eines durch den Sonnenwind geschwächten Dynamos validieren.

    Originalveröffentlichung
    Daniel Heyner, Johannes Wicht, Natalia Gómez-Pérez, Dieter Schmitt, Hans-Ulrich Auster, Karl-Heinz Glassmeier
    Evidence from Numerical Experiments for a Feedback Dynamo Generating Mercury’s Magnetic Field
    Science, 23. Dezember 2011
    DOI: 10.1126/science.1207290

    Kontakt
    Prof. Dr. Karl-Heinz Glaßmeier
    TU Braunschweig, Institut für Geophysik und extraterrestrische Physik
    Tel.: +49 531 391 5214
    E-Mail: kh.glassmeier@tu-bsraunschweig.de

    Dipl.-Phys. Daniel Heyner
    TU Braunschweig, Institut für Geophysik und extraterrestrische Physik
    Tel: +49 531 391 5239
    E-Mail: d.heyner@tu-braunschweig.de

    Dr. Johannes Wicht
    Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
    Tel.: +49 5556 979-437
    E-Mail: wicht@mps.mpg.de


    Images

    Merkur im Fokus: Die Raumsonde Messenger – von der dieses Foto stammt – hat bestätigt, dass der innerste Planet ein 150-mal schwächeres Magnetfeld besitzt als die Erde. Jetzt haben Forscher eine Erklärung dafür gefunden. © NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
    Merkur im Fokus: Die Raumsonde Messenger – von der dieses Foto stammt – hat bestätigt, dass der inne ...

    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).