idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/09/2012 10:27

Molecular Chaperone for Membrane Proteins

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    For photosynthesis, the chloroplasts of all green plants contain biological solar collectors known as light-harvesting proteins. Because these proteins are not manufactured in the plant cell where they are used, they need to be transported. A specific molecular chaperone ensures they reach their destination. Biochemists at Heidelberg University have now gained elementary knowledge on the structure and function of this chaperone with the help of a variety of methods from structural biology.

    Press Release

    Heidelberg, 9 February 2012

    Molecular Chaperone for Membrane Proteins
    Heidelberg biochemists decipher the “escort service” for biological solar collectors

    For photosynthesis, the chloroplasts of all green plants contain biological solar collectors known as light-harvesting proteins. Because these proteins are not manufactured in the plant cell where they are used, they need to be transported. A specific molecular chaperone ensures they reach their destination. Biochemists at Heidelberg University have now gained elementary knowledge on the structure and function of this chaperone with the help of a variety of methods from structural biology.

    The process of photosynthesis takes energy from the sun and converts it into chemical energy, creating oxygen in the process. For this purpose, the chloroplasts of all green plants contain biological solar collectors. These light-harvesting proteins are the most frequently occurring membrane proteins on the planet and are absolutely essential for efficient photosynthesis. Like all membrane proteins, the light-harvesting proteins also have characteristic hydrophobic – i.e. water-repellent – regions with which they are embedded in their target membrane. Until they reach the target membrane, in this case membrane systems in the chloroplasts, a chaperone shields the hydrophobic regions from harmful interactions.

    The chloroplast proteins cpSRP43 and cpSRP54 function in this chaperone role for the light-harvesting proteins. “Deciphering the three-dimensional structure of the core complex of these two proteins allows us to draw basic conclusions about how the chaperone functions”, explains Prof. Dr. Irm¬gard Sinning of the Heidelberg University Biochemistry Center (BZH). The team of scientists working with Prof. Sinning discovered that two protein motifs take part in the interaction between cpSRP43 and cpSRP54, similar to the motifs that play a central role in regulating access to the genetic material in the cell nucleus. While scientists have known for years about the “histone code” involved in the processes in the nucleus, they now face the puzzle of the newly discovered “arginine code” in the chloroplasts.

    The Heidelberg scientists conducted their research in close cooperation with colleagues from the Munich Technical University and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The researchers combined different structural biology methods in the pursuit of their work. X-ray structure analysis, nuclear magnetic resonance (NMR) spectroscopy, and small angle X-ray scattering were key in revealing the architecture and dynamics of the core complex of cpSRP43 und cpSRP54. In addition, they took advantage of the Biochemistry Center’s protein crystallization platform, which receives support from the Cluster of Excellence CellNetworks at Heidelberg University. The results of the research were published in “Nature Structural & Molecular Biology”.

    Original publication:
    I. Holdermann, N.H. Meyer, A. Round, K. Wild, M. Sattler, I. Sinning: Chromodomains read the arginine code of post-translational targeting. Nat Struct Mol Biol. 2012 Jan 8. doi: 10.1038/nsmb.2196

    Contact:
    Prof. Dr. Irmgard Sinning
    Biochemistry Center, phone: +49 6221 54-4781
    irmi.sinning@bzh.uni-heidelberg.de

    Communications and Marketing
    Press Office, Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).