idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/07/2012 11:34

Drahtseilakt im Gehirn: Wie Nervenimpulse entstehen

Silke Oßwald Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)

    Bis zu 1000 elektrische Signale müssen einzelne Nervenzelle pro Sekunde aussenden, damit wir uns in der Welt zurechtfinden können. Wissenschaftler am FMP haben einen zentralen Schalter bei diesem Vorgang – den Glutamat-Rezeptor – genauer untersucht. Bis ins Detail verstehen die Forscher inzwischen die molekulare Maschinerie, durch die Gedanken, Sinneseindrücke und Reaktionen überhaupt erst möglich sind. Der Glutamat-Rezeptor entscheidet dabei nicht nur über die Leistungsfähigkeit unseres Gehirns, sondern könnte auch eine Rolle spielen bei Störungen wie Schlaganfällen, Parkinson und Epilepsie.

    Ohne ihn geht gar nichts: Der Glutamat-Rezeptor ist eines der zentralen Moleküle in unserem Nervensystem und steht daher weltweit im Mittelpunkt vieler Forschungsprojekte. Wenn man seine Funktionsweise vollständig verstehen und präzise manipulieren könnte, dann würde dies die Medizin einen großen Schritt voranbringen.
    Der Rezeptor sitzt in den Membranen von Nervenzellen und wird durch den Neurotransmitter Glutamat aktiviert: Bindet Glutamat auf der Außenseite, dann öffnet sich eine winzige Pore in der Zellmembran, geladene Ionen strömen ein und auf diese Weise wird ein elektrisches Signal erzeugt – bis zu tausendmal in einer Sekunde aufs Neue. „Nervenimpulse müssen so schnell sein, damit wir unsere Umwelt verstehen und reagieren können“, erklärt Andrew Plested, der am FMP den Glutamat-Rezeptor erforscht. „Ein Tennisspieler zum Beispiel erkennt im Bruchteil einer Sekunde wohin ein Ball fliegen wird und hechtet in die richtige Richtung. Und bei allen Tönen, die wir hören, schwingt unser Trommelfell hunderte oder tausende Male in einer Sekunde – nur mit sehr schnellen Nervenimpulsen können wir so etwas interpretierten.“
    Den jungen Forscher treibt daher die Frage an, wie ein Bio-Molekül so präzise und so schnell Signale vermitteln kann. Um das herauszufinden, hat er den Rezeptor in seine Einzelteile zerlegt und wie mit einem Baukasten neu zusammengesetzt. Dabei hat er die Tatsache ausgenützt, dass jeder Glutamat-Rezeptor aus verschiedenen Modulen zusammengesetzt ist und außerdem in verschiedenen Untertypen vorkommt: So richtig schnell reagiert der sogenannte AMPA-Typ, dagegen ist der Kainat-Typ eher langsam. Andrew Plested und seine Mitarbeiterin Anna Carbone haben Teile des langsamen in den schnellen Rezeptor verpflanzt und umgekehrt. Die Forscher „zerschneiden“ dabei nicht den Rezeptor selbst, sondern nehmen das entsprechende Gen – die Bauanleitung – auseinander und kombinieren die Stücke neue. Anschließend testen sie die neu entstandenen Rezeptoren in Zellkulturen.
    Die Forscher fanden durch diese Experimente heraus, dass es ein bestimmtes Modul ist, durch das ein langsamer Rezeptor zu einem schnellen wird – der Teil des Rezeptors, an den Glutamat andockt. Bindet der Neurotransmitter dort, dann verbiegt sich das gesamte Rezeptormolekül ein wenig – so als ob man eine Murmel in ein enges Drahtgeflecht schiebt. Durch dieses Verbiegen öffnet sich dann die Pore in der Nervenzelle. „Dabei könnte wichtig sein, dass das Molekül – ganz vereinfacht ausgedrückt – weder zu steif noch zu ‚wabbelig‘ ist,“ erklärt Plested. Entscheidend ist auch, dass der Rezeptor nicht nur schnell und empfindlich reagiert, sondern nach einer Aktivierung für eine winzige Zeitspanne unempfindlich gegenüber Glutamat wird. „In den Rezeptor ist quasi ein Timer eingebaut“, erklärt Plested. „Ansonsten wären die einzelnen Signale zu lang und würden ineinander verschwimmen.“

    Wie wichtig der schnelle Rezeptor ist, zeigt sich auch daran, dass er bei geistig zurückgebliebenen Menschen mitunter von Geburt an durch Mutationen beschädigt ist. Der Glutamat-Rezeptor vermittelt dabei nicht nur augenblickliche Reaktionen, sondern sorgt durch seine Signale auch dafür, dass bei Lernprozessen bestimmte Nervenverbindungen verstärkt werden und Erinnerungen entstehen.
    Bei Krankheiten wie Parkinson und Epilepsie werden bereits Medikamente eingesetzt, die den Glutamat-Rezeptor blockieren, allerdings sind solche Substanzen meist noch zu unspezifisch und können Psychosen und Halluzinationen verursachen. „Unser langfristiges Ziel ist es, die Rolle des Glutamat-Rezeptors im lebenden Gehirn zu untersuchen“, sagt Andrew Plested, dessen Arbeitsgruppe auch Teil des Exzellenzcluster „NeuroCure“ an der Charité-Universitätsmedizin ist. Das könnte auch bei der Behandlung mancher Störungen von Bedeutung sein, wie zum Beispiel bei einem Schlaganfall: Hier wird in kurzer Zeit gefährlich viel Glutamat ausgeschüttet.“


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).