idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/02/2012 11:56

Biochemists Discover New Mechanism in Ribosome Formation

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    A new mechanism in the formation of ribosomes has been discovered by researchers from the Heidelberg University Biochemistry Center. In an interdisciplinary approach, the Heidelberg scientists, along with colleagues from Switzerland and Japan, describe a heretofore uncharacterised protein that plays a specific role in ribosome assembly in eukaryotes, organisms whose cells contain a cell nucleus. This protein makes sure that specific factors required for ribosome synthesis are transported together, like hitchhikers, into the nucleus to the site of assembly. The results of this research were published in “Science”.

    Press Release

    2 November 2012

    Biochemists Discover New Mechanism in Ribosome Formation

    Hitching a ride into the nucleus: Protein controls synchronised transport of ribosome factors

    A new mechanism in the formation of ribosomes has been discovered by researchers from the Heidelberg University Biochemistry Center. In an interdisciplinary approach, the Heidelberg scientists, along with colleagues from Switzerland and Japan, describe a heretofore uncharacterised protein that plays a specific role in ribosome assembly in eukaryotes, organisms whose cells contain a cell nucleus. This protein makes sure that specific factors required for ribosome synthesis are transported together, like hitchhikers, into the nucleus to the site of assembly. The results of this research were published in “Science”.

    Ribosomes, the protein factories of the cell, are macromolecular complexes of ribonucleic acids (RNA) and ribosomal proteins (r-proteins) that are organised in a highly complicated three-dimensional nanostructure. Correct synthesis of ribosomes is critical for the division of all cells and is a process that follows strict rules. In eukaryotes, new ribosomes are formed predominantly in the cell nucleus. Therefore, the r-proteins needed for ribosome formation must travel from the cytoplasm of the cell to a site in the nucleus where the ribosomes are assembled. Until recently it was not clear whether r-proteins that have a similar function and form functional clusters on the ribosome structure are also co-transported into the nucleus.

    The researchers have now found a protein that coordinates the co-transport of certain r-proteins in functional clusters into the cell nucleus. This factor is called Symportin1, for synchronised import. “Symportin1 synchronises the import of both the Rpl5 and Rpl11 r-proteins into the cell nucleus and supports their integration into the growing ribosome structure”, explains Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center (BZH). “It employs a familiar logistical concept from every day life, like picking up a hitchhiker or sharing a taxi with someone headed for the same destination”, says Dr. Gert Bange of the BZH, lead author of the study together with Dr. Dieter Kressler (now of Fribourg University).

    The researchers from Heidelberg University and the University of Fribourg (Switzerland) collaborated closely with colleagues from Osaka University in Japan on the research. “The combination of different methods ranging from traditional cell biology to new biophysical approaches was crucial in developing the detailed picture of this previously unknown biological mechanism”, emphasises Prof. Dr. Ed Hurt, also of the BZH. The study took advantage of the Biochemistry Center’s crystallisation platform and the research received support from the Cluster of Excellence “CellNetworks” of Heidelberg University.

    Original publication:
    D. Kressler, G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch, D. Pratte, S. Amlacher, D. Strauß, Y. Yoneda, J. Kata-hira, I. Sinning, E. Hurt: Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly, Science (2 November 2012), Vol. 338 no. 6107, 666-671, doi: 10.1126/science.1226960

    Contact:
    Prof. Dr. Irmgard Sinning / Prof. Dr. Ed Hurt
    Heidelberg University Biochemistry Center
    Phone: +49 (0)6221 54-4781, -4173
    Irmi.sinning@bzh.uni-heidelberg.de
    ed.hurt@bzh.uni-heidelberg.de

    Communications and Marketing
    Press Office
    phone: +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).