idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/12/2012 14:10

Gespeicherte Röntgenphotonen - Edelstahl könnte in Zukunft Daten speichern

Dr. Bernold Feuerstein Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    Röntgenstrahlen in einer Box ‚auf Eis zu legen‘ und später nach Belieben wieder freizusetzen, klingt nach Science Fiction. Neue Rechnungen zeigen jedoch, dass mithilfe eines Magnetfelds einzelne Röntgenquanten eingefangen und ohne Qualitätsverlust wiedergewonnen werden können. Außerdem ist es möglich, das gespeicherte Röntgenquant zu manipulieren, insbesondere seine Phase kontrolliert zu ändern. Die Rolle der Box übernehmen dabei Eisenkerne. Sie nehmen die Energie des Röntgenquants auf und speichern sie als angeregter Zustand. Entscheidend ist, dass sich Röntgenstrahlen extrem scharf, im Prinzip auf die Größe eines Atoms, fokussieren lassen.

    Quantencomputer der Zukunft sollen statt mit Elektronen (Elektronik) mit Licht (Photonik) als dem schnellstmöglichen Informationsträger arbeiten. Bisherige Experimente verwenden dafür Infrarot- oder sichtbares Licht. Kürzere Wellenlängen wie bei UV-Licht und insbesondere Röntgenstrahlen würden eine weitere Miniaturisierung der Schaltungen ermöglichen. Geeignete Röntgenstrahlen-Quellen und auch optische Elemente stehen mittlerweile zur Verfügung.

    Eine Speicherung von Röntgenphotonen unter Erhalt ihrer quantenmechanischen Eigenschaften ließ sich jedoch noch nicht realisieren. Hierfür bieten sich Atomkerne mit niedrig liegenden angeregten Zuständen wie Eisen-57 an. Wie das kontrolliert geschehen könnte, hat nun Wen-Te Liao vom MPI für Kernphysik in Heidelberg im Rahmen seiner Promotion berechnet.

    In dem Szenario befindet sich ein Edelstahlplättchen in einem Magnetfeld, das die Energieniveaus der Eisen-57-Kerne aufspaltet. Senkrecht zur Richtung des Magnetfelds wird polarisiertes kohärentes Röntgenlicht eingestrahlt, dessen Intensität so eingestellt ist, dass in der Probe pro Puls nur 1 Photon absorbiert, also 1 Kern angeregt wird. Abschalten des Magnetfelds kurz nach dem Röntgenpuls blockiert den ‚Rückweg‘: die Anregung einschließlich aller quantenmechanischen Eigenschaften des Photons wie Polarisation und Phase wird quasi eingefroren, also die Information gespeichert. Wiedereinschalten des Magnetfelds zu einem späteren Zeitpunkt setzt das Photon mit seinen ursprünglichen Eigenschaften wieder frei – die Information wird ausgelesen. So sollten Speicherzeiten von rund 100 Nanosekunden möglich sein.

    Wird die Richtung des Magnetfelds beim Wiedereinschalten umgekehrt, ist die Phase des freigesetzten Photons um einen halben Schwingungszyklus verschoben. Diese Phasenverschiebung kann mithilfe eines zweiten Edelstahlplättchens gemessen werden und ließe sich zum gezielten Auslesen von Photonen mit bestimmter Phase nutzen. „Unsere Rechnungen weisen einen Weg zur Photonik mit Röntgenstrahlen und den dichtesten Datenspeichern überhaupt“, resümiert Gruppenleiterin Adriana Pálffy.


    More information:

    http://link.aps.org/doi/10.1103/PhysRevLett.109.197403 - Coherent storage and phase modulation of single hard x-ray photons using nuclear excitons, Wen-Te Liao, Adriana Pálffy, Christoph H. Keitel, Phys. Rev. Lett. 109, 197403 (2012), DOI: 10.1103/PhysRevLett.109.197403
    http://physics.aps.org/articles/v5/125 - Focus: Storing an X-ray Photon, David Lindley, Physics 5, 125 (2012), DOI: 10.1103/Physics.5.125
    http://www.mpi-hd.mpg.de/keitel/ - Abteilung Keitel am MPI für Kernphysik


    Images

    Abb. 1: Der vorgeschlagene Versuchsaufbau. Ein Röntgenpuls (blau) trifft von links auf ein Edelstahlplättchen in einem Magnetfeld, dessen Richtung durch den roten Pfeil gekennzeichnet ist.
    Abb. 1: Der vorgeschlagene Versuchsaufbau. Ein Röntgenpuls (blau) trifft von links auf ein Edelstahl ...
    Grafik: Wen-Te Liao, MPIK
    None

    Abb. 2: Schema der Energieniveaus in einem Eisen-57-Kern, links ohne und rechts mit Magnetfeld. Die blauen Pfeile zeigen die mit linear polarisierten Röntgenpulsen erlaubten Übergänge.
    Abb. 2: Schema der Energieniveaus in einem Eisen-57-Kern, links ohne und rechts mit Magnetfeld. Die ...
    Grafik: Wen-Te Liao, MPIK
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).