idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/30/2013 08:59

Neue Lichtquellen entwickelt - Perfekte Antennen: Wie ringförmige Moleküle OLEDs heller machen

Alexander Schlaak Referat II/2, Kommunikation
Universität Regensburg

    Ein Forscherteam der Universitäten Regensburg und Bonn hat mit Kollegen aus Utah (USA) neue molekulare Lichtquellen entwickelt, die die Form eines Wagenrads haben. Die Wissenschaftler um Prof. Dr. John Lupton von der Universität Regensburg und Prof. Dr. Sigurd Höger von der Universität Bonn konnten zeigen, dass die Moleküle die Helligkeit von organischen Leuchtdioden (OLEDs) beeinflussen könnten. Die Forschungsergebnisse sind jetzt in der renommierten Fachzeitschrift „Nature Chemistry“ erschienen.

    Bei der Entwicklung von OLEDs wurde bislang oft auf herkömmliche organische Halbleiter auf Polymerbasis zurückgegriffen. Diese kettenförmigen Makromoleküle bestehen aus kleinen Untereinheiten, die Licht abgeben, wenn man elektrischen Strom hindurchleitet. Sie sind zudem leicht zu verarbeiten. Allerdings weisen sie auch den Nachteil auf, dass Licht nicht optimal aus den OLEDs abstrahlen kann. Denn die kettenförmigen Polymere verhalten sich wie Antennen. Genauso wie bei Radio, WLAN oder Walkie-Talkie gibt es dabei günstige und weniger günstige Ausrichtungen der Antenne. Man spricht hier von der Polarisation: Antennen strahlen elektromagnetische Wellen ab, die in einer bestimmten Richtung schwingen.

    Mit der Entwicklung der Wagenrad-förmigen Moleküle ist es den Forschern nun gelungen, den Nachteil der Polarisation auszuschalten. Nicht nur das: Die „Chemie“ der Rad-Moleküle ist zudem identisch mit der „Chemie“ der kettenförmigen Polymere, womit auch die wesentlichen physikalischen Eigenschaften übereinstimmen. Die Rad-Moleküle eignen sich demnach genauso gut für die Herstellung von OLEDs wie die herkömmlichen kettenförmigen Polymere. Ein weiterer offensichtlicher Vorteil: Alle Moleküle haben die gleiche Form, Farbe oder Orientierung.

    Da alle einzelnen Moleküle in jede beliebige Richtung abstrahlen können, bilden sie gewissermaßen perfekte Antennen. Das Licht jedes einzelnen Moleküls ist unpolarisiert; es gibt keine Vorzugsrichtung für die elektromagnetische Welle.

    Werden die symmetrischen Moleküle nun angeregt, so bildet sich ein elektrischer Dipol. Das Prinzip ähnelt dem einer elektrischen Kompassnadel: Im Molekül werden räumliche positive und negative Ladungen getrennt. Die Dipole zeigen – wie eine Kompassnadel – in eine bestimmte Richtung, die nun allerdings zufällig vorgegeben ist, da die Moleküle symmetrisch sind. Dies führt dazu, dass die Dipole beliebig abwechselnd in alle Richtungen zeigen. Somit wird das abgestrahlte Licht unpolarisiert.

    Für die Entwicklung von OLEDs haben die neuen Moleküle demnach wesentliche Vorteile. So kann mit den Wagenrad-Molekülen im Prinzip eine höhere Lichtausbeute erreicht werden, was sich unter anderem auch auf die Helligkeit der Lichtquellen auswirkt.

    Das Projekt wurde von der VolkswagenStiftung gefördert.

    Original-Titel der Publikation:
    Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles, Fachjournal “Nature Chemistry”, DOI: 10.1038/NCHEM.1758

    Der Artikel im Netz unter:
    www.nature.com/doifinder/10.1038/nchem.1758

    Ansprechpartner für Medienvertreter:
    Prof. Dr. John Lupton
    Universität Regensburg
    Institut für Experimentelle und Angewandte Physik
    Tel.: 0941 943-2081
    John.Lupton@ur.de

    Prof. Dr. Sigurd Höger
    Universität Bonn
    Kekulé-Institut für Organische Chemie und Biochemie
    Tel.: 0228 73-6127
    hoeger@uni-bonn.de


    Images

    Rastertunnelmikroskop-Bild einzelner Wagenradmoleküle, mit überlagerter chemischer Struktur eines Moleküls.
    Rastertunnelmikroskop-Bild einzelner Wagenradmoleküle, mit überlagerter chemischer Struktur eines Mo ...
    Source: Bildnachweis: S. Jester/S. Höger (Universität Bonn)


    Criteria of this press release:
    Journalists
    Chemistry, Energy, Materials sciences, Physics / astronomy
    transregional, national
    Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).