idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/28/2013 11:00

Ein neues, simulierbares Modell für exotische Quantenphänomene

Dr. Olivia Meyer-Streng Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Wissenschaftler am MPQ entwickeln ein neues Modell für das Auftreten des Fraktionellen Quanten-Hall-Effekts in Gittersystemen.

    Es ist faszinierend, wie das quantenmechanische Verhalten von Teilchen im Mikrokosmos zu seltsamen Eigenschaften führen kann, die sich sogar in der klassischen Welt bemerkbar machen. Ein Beispiel dafür ist der Fraktionelle Quanten-Hall-Effekt (FQH), der vor rund 30 Jahren an Halbleiter-Bauelementen entdeckt wurde. Er zählt zu den faszinierendsten Phänomenen in der Festkörperphysik und ist hier bereits eingehend untersucht worden. Heutzutage sind Experimentalphysiker in der Lage, Effekte, die in der Festkörperphysik auftreten, mit ultrakalten Atomen in optischen Gittern zu modellieren. Diese Möglichkeiten wecken das Interesse an der Frage, unter welchen Bedingungen der FQH in diesen Systemen beobachtet werden könnte. Die theoretische Physikerin Dr. Anne Nielsen hat jetzt zusammen mit anderen Wissenschaftlern aus der Abteilung Theorie von Prof. Ignacio Cirac am Max-Planck-Institut für Quantenoptik und der Universidad Autónoma de Madrid ein neues Gittermodell entwickelt, das ein FQH-ähnliches Verhalten zeigen würde (Nature Communications, 28. November 2013).

    Der klassische Hall-Effekt beschreibt das Verhalten von Elektronen, allgemeiner gesagt von Ladungsträgern, in einem elektrischen Leiter unter dem Einfluss eines Magnetfeldes, das senkrecht zum elektrischen Strom gerichtet ist. Aufgrund der Lorentz-Kraft baut sich eine sogenannte Hall-Spannung auf, die linear mit der Stärke des Magnetfeldes steigt.

    1980 untersuchte der deutsche Physiker Klaus von Klitzing die elektronische Struktur von flachen Halbleiter-Transistoren (auch als MOSFETs bezeichnet) bei extrem tiefen Temperaturen und extrem hohen Magnetfeldern. Dabei machte er die verblüffende Beobachtung, dass der Hall-Widerstand mit steigendem Magnetfeld nicht linear, sondern stufenweise anstieg, wobei der Wert jeder Stufe umgekehrt proportional zum Vielfachen einer Kombination aus bestimmten Naturkonstanten war. Einige Jahre später deckten Messungen an Bauteilen aus Galliumarsenid unter ähnlichen Bedingungen zusätzliche Plateaus auf, die Bruchteilen dieses Vielfachen entsprachen. Beide Phänomene sind von fundamentaler Bedeutung, geben sie doch völlig neue Einblicke in die quantenmechanischen Prozesse, die in flachen Halbleiterstrukturen ablaufen, und sie brachten ihren Entdeckern den Nobelpreis: 1985 wurde Klaus von Klitzing mit dem Nobelpreis für Physik ausgezeichnet, 1998 erhielten die Physiker Robert Laughlin, Horst Störner and Daniel Tsui diese höchste Auszeichnung in der Wissenschaft.

    Der FQH ist ein äußerst spannendes Phänomen. Er wird von Theoretikern damit erklärt, dass einzelne oder mehrere Elektronen mit den magnetischen Flussquanten des Feldes zusammengesetzte Zustände bilden. Genauere experimentelle Untersuchungen dieses Zustandes gestalten sich jedoch schwierig, zumal er sehr empfindlich auf Störungen reagiert. Mit optischen Gittern, in denen Atome die Rolle von Elektronen spielen, ließe sich das Phänomen sehr viel sauberer darstellen. Dies, und die Hoffnung auf einfachere und robustere FQH-Systeme ist der Grund dafür, dass Theoretiker weltweit zu verstehen versuchen, welche Mechanismen zu der Entstehung des FQH in Gittersystemen führen.

    Das MPQ-Team konzentriert sich dabei auf die toplogischen Eigenschaften der FQH-Zustände. Die Topologie eines Objektes repräsentiert bestimmte geometrische Eigenschaften. So sind z.B. eine Teetasse mit einem geschlossenen Henkel und ein Bagel toplogisch äquivalent, da sie ineinander überführt werden können ohne Einschnitte oder das Stanzen von Löchern. Ein Fußball und ein Bagel sind dagegen nicht toplogisch äquivalent. In ausgedehnten Festkörpersystemen spüren die Elektronen die elektrischen Kräfte vieler periodisch angeordneter Ionen. Gewöhnlich bilden ihre erlaubten Energiezustände gerade und kontinuierliche „Bänder“, deren Topologie trivial ist. In Systemen jedoch, die den FQH aufweisen, verleiht die Topologie dem Material exotische Eigenschaften, z.B. dass der elektrische Strom nur an den Kanten durchgelassen wird und sehr widerstandsfähig gegenüber Störungen ist.

    „Wir haben eine neues Gittermodell entwickelt, an dem der FQH-Zustand beobachtet werden sollte“, sagt Anne Nielsen, die Erstautorin der Veröffentlichung. „Dabei gehen wir von einem zweidimensionalen Gitter aus, an dem jeder Platz mit einem Teilchen besetzt ist. Jedes Teilchen ist durch seinen sogenannten Spin charakterisiert, der entweder nach oben oder nach unten zeigt. Außerdem besteht zwischen den Teilchen eine lokale Wechselwirkung mit kurzer Reichweite.“ (Siehe Abbildung 1.) Numerische Untersuchungen ergaben, dass die Eigenschaften und die Topologie des Systems dem Verhalten entsprechen, das man für einen FQH-Zustand erwartet. So bilden sich Korrelationen über große Entfernungen aus, die zu der Entstehung von zwei verschiedenen Grundzuständen des Systems führen, wenn man periodische Randbedingungen berücksichtigt.

    Die hier verwendeten mathematischen Werkzeuge haben ein breites Anwendungsgebiet und öffnen damit die Perspektive für die Entwicklung weiterer interessanter Modelle. „Der Mechanismus, der hier zur Ausbildung des FQH führt, unterscheidet sich offenbar von den Mechanismen früherer Modelle“, erklärt Anne Nielsen. „Außerdem haben wir gezeigt, wie sich das Modell mit ultrakalten Atomen in optischen Gittern im Experiment realisieren ließe. Dadurch ergäben sich einzigartige Möglichkeiten, diese fragilen Zustände unter kontrollierten Bedingungen experimentell zu untersuchen, was einen Meilenstein für Quantensimulationen bedeuten würde.“ Olivia Meyer-Streng

    Abbildung 1: Illustration des Gittermodells, in dem sich jedes Teilchen entweder in dem Zustand “Spin aufwärts” oder “Spin abwärts” befindet. (Grafik: Anne Nielsen, MPQ)

    Originalveröffentlichung:

    Anne E. B. Nielsen, Germán Sierra, and J. Ignacio Cirac
    Local models of fractional quantum Hall states in lattices and physical implementation
    Nature Communications 10.1038/ncomms3864, 28 November 2013

    Kontakt:

    Prof. Dr. J. Ignacio Cirac
    Honorarprofessor, TU München
    Direktor am Max-Planck-Institut für Quantenoptik
    Telefon: +49 (0)89 / 32 905 -705/736
    Telefax: +49 (0)89 / 32 905 -336
    E-Mail: ignacio.cirac@mpq.mpg.de

    Dr. Anne Nielsen
    Max-Planck-Institut für Quantenoptik
    Hans-Kopfermann-Str. 1
    85748 Garching b. München
    Telefon: + 49 (0)89 / 32 905 -130
    Telefax: + 49 (0)89 / 32 905 -336
    E-Mail: anne.nielsen@mpq.mpg.de

    Dr. Olivia Meyer-Streng
    Presse-und Öffentlichkeitsarbeit
    Max-Planck-Institut für Quantenoptik
    85748 Garching b. München
    Telefon: +49 (0)89 / 32 905 -213
    E-Mail: olivia.meyer-streng@mpq.mpg.de


    Images

    Abbildung 1
    Abbildung 1

    None


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).