idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/25/2014 19:00

Mind alteration device makes flies sing and dance

Dr. Heidemarie Hurtl IMP Communications
IMP - Forschungsinstitut für Molekulare Pathologie GmbH

    Researchers at the Institute of Molecular Pathology (IMP) in Vienna present novel method to study the activity of specific brain regions in moving flies.

    In a joint effort with collaboration partners from the Vienna University of Technology and a lab in the USA, the team of Andrew Straw at the IMP developed a special device for the thermogenetic control of flies. This tool, called FlyMAD, enabled the scientists to target light or heat to specific body regions of flies in motion and to analyse the animals‘ brain cells. Compared to other techniques, FlyMAD allows highly improved temporal resolution. Using the new technology, Straw and his colleagues got new insight into the role of two neuronal cell types in courtship behavior of flies. The results of the study will be published online in Nature Methods on May 25 (doi 10.1038/nmeth.2973).

    The fruit fly Drosophila Melanogaster represents an ideal experimental system to analyse circuit functions of brain cells (neurons). In the past, it was not possible to specifically control the activity of neurons in moving flies. Andrew Straw and his team have now overcome this barrier.

    Rapid mind alteration in moving flies

    Straw and his co-workers are interested in the mechanisms underlying cell circuits in the fly brain. Straw’s group concentrates on the control of complex behaviors such as courtship. In order to better understand how different neuronal circuits work together, Straw and his team developed FlyMAD (“Fly Mind Altering Device”), an apparatus using a video camera to track the flies‘ motion in a box. FlyMAD allows simultaneous observation of several flies and targeted irradiation of specific body regions of these animals. By combining the sensitive methods of optogenetics and thermogenetics, the researchers were able to specifically alter neural pathways in the fly brain with FlyMAD.

    The novel technology of thermogenetics uses genetically modified, temperature-sensitive flies. Upon irradiation with infrared light and the concomitant rise in temperature to 30 degrees Celsius, these animals change certain aspects of their behavior. This does not happen at a control temperature of 24 degrees Celsius. Compared to other commonly used methods, FlyMAD applies a highly improved temporal resolution. Infrared-induced activation or repression of specific neurons and the following change in the animals‘ behavior occur within the fraction of a second.

    The application of visible light to certain genetically engineered flies can also induce alterations of their brain. FlyMAD thus represents an absolute novelty for fly research, as optogenetics has been restricted to mice so far.

    New insight into courtship behavior of flies

    Straw and his co-workers tested FlyMAD by analyzing already known reactions of genetically modified flies to light and heat. As this proof-of-principle showed that FlyMAD worked reliably – for example by making the flies “moonwalk” - the researchers went on to use their method to tackle new scientific questions. In a thermogenetic set up, they investigated a certain type of neurons that had been linked to the flies’ courtship song in earlier experiments. Taking advantage of the better temporal resolution of FlyMAD, the scientists were able to characterize the role of two neuronal cell types in the brain in more detail. They could show that activity of one type of neurons correlated with a persistent state of courtship, whereas the other cell type was important for the action of “singing”. In the experiment this became obvious when males tried to mate with a ball of wax, circled it and started vibrating their wings after stimulation with the laser beam.

    FlyMAD allows combination of optogenetics and thermogenetics

    In the future, Straw wants to combine the activation of flies both by light and by heat in one experiment – that is feasible with FlyMAD. This would allow the activation or repression of different genetic elements in one fly. „FlyMAD offers the fantastic opportunity to address many of our questions. We could, for example, analyze how single neurons function in a cascade within the neuronal circuit“, Straw emphasizes the potential of his work. Ultimately, new insight into the function of the fly brain can also be applied to the network of cells in the mammalian brain.

    * * * * * * * * * * * * * * * * * *

    Original Publication
    Daniel E. Bath, John R. Stowers, Dorothea Hörmann, Andreas Poehlmann, Barry J. Dickson and Andrew D. Straw. FlyMAD: Rapid thermogenetic control of neuronal activity in freely-walking Drosophila. Nature Methods, doi 10.1038/nmeth.2973, 2014

    This work was funded by a postgraduate scholarship from Canada, an ERC starting grant, a WWTF grant, an ERC Advanced Grant and by IMP core funding.

    Illustrations
    Illustrations to be used free of charge in connection with this press release can be downloaded from the IMP website: www.imp.ac.at/pressefoto-flymad

    About Andrew Straw
    Andrew Straw studied biology in Los Angeles, USA, and obtained his PhD in Adelaide in 2004 for his dissertation in the field of neurobiology. He worked as a Postdoc and Senior Postdoc at Caltech in Pasadena, USA, and became Senior Research Fellow there in 2010. Since 2010, Straw holds a position as Research Fellow at the IMP in Vienna where he has his own independent research group. His work is partly funded by an ERC Starting grant.

    About the IMP
    The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

    Scientific Contact
    Andrew Straw, PhD
    straw@imp.ac.at

    Media contact
    Dr. Heidemarie Hurtl
    IMP Communications
    Phone: +43 (0)664 8247910
    E-mail: hurtl@imp.ac.at

    Mag. Evelyn Devuyst, MAS
    Phone: +43 1 79044 3626
    E-Mail: evelyn.devuyst@imba.oeaw.ac.at

    Elena Bertolini
    Phone: +43 1 79730 3824
    E-Mail: bertolini@imp.ac.at


    More information:

    http://www.imp.ac.at/pressefoto-flymad


    Images

    This composite image shows a laser being aimed at a walking fly using the FlyMAD system.
    This composite image shows a laser being aimed at a walking fly using the FlyMAD system.
    Matt Staley and Dan Bath, JFRC, HHMI
    None

    A male Drosophila raises a wing and ‘sings’ due to neuronal activation of song neurons.
    A male Drosophila raises a wing and ‘sings’ due to neuronal activation of song neurons.
    Dan Bath, JFRC, HHMI
    None


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).