idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/07/2014 20:00

Das Rätsel um die Geburt des Sonnensystems ist fast entschlüsselt

Claudia Vojta Pressestelle
Technische Universität Dresden

    Forscher sind einen Schritt weiter gekommen, die Entstehung der Sonne zu verstehen.

    Ein Forscherteam um Dr. Maria Lugaro von der Monash University in Australien, an dem auch Prof. Dr. Kai Zuber vom Institut für Kern- und Teilchenphysik der TU Dresden beteiligt war, untersuchte die prähistorische Phase des Sonnensystems und die Ereignisse, die zur Geburt der Sonne führten. Darüber berichten sie in der aktuellen Online-Ausgabe der Zeitschrift „Science“ vom 8. August 2014.

    Wie entstanden die Sonne und das Planetensystem? Diese Frage beschäftigt nicht nur Forscher auf der ganzen Welt seit Jahrzehnten. Bisher wissen wir, dass die Sonne vor ungefähr 4,6 Milliarden Jahren aus einer gigantischen interstellaren Wolke, der so genannten Sonnensystem-Materie, aus Gasen, wie zum Beispiel Helium und Wasserstoff, und „Staub“ aus Eispartikeln und schweren Elementen, wie Eisen, Gold, Silber, Blei und Platin, entstand. Auch der bisherige und zukünftige Lebenslauf der Sonne kann mit Hilfe der Gesetze der Physik und dem Wissen aus kernphysikalischen Prozessen am Computer simuliert werden.

    Ein wichtiges Werkzeug bei der Erforschung der Sonnenentstehung ist die Radioaktivität, durch die kosmische Zeiten sehr genau gemessen werden können. Dies ist ähnlich der Radiokarbon-Datierung in der Archäologie. Wichtig für eine Datierung ist es, radioaktive Isotope zu finden, deren Halbwertszeit in etwa gleich der zu untersuchenden Zeiträume ist. So konnte bisher bereits das Alter der Erde, die Entwicklung unseres Sonnensystems und das Alter diverser sehr alter Sterne unserer Galaxie bestimmt werden. Die Wissenschaftler um Prof. Kai Zuber nutzen das Wissen um den Zerfall von radioaktiven Atomkernen, um genau zu bestimmen, wann die letzten schweren Elemente, wie zum Beispiel Gold, Silber, Platin, Blei und Seltenerd-Elemente, von Sternen an die präsolare Materie abgegeben wurden. „Wir können nun mit Sicherheit sagen, dass das letzte Prozent aus Gold, Silber und Platin rund 100 Millionen Jahre und das letzte Prozent an Blei und Seltenerd-Elementen 30 Millionen Jahre vor der Geburt der Sonne von der Sonnensystem-Materie aufgenommen wurde“, so Kai Zuber. „Wir verwendeten die Daten über schwere radioaktive Kerne, wie zum Beispiel Hafnium, aus Meteoriten, um diesen Zeitpunkt genau zu bestimmen.“

    Das Seltenerd-Element Hafnium, das in geringer Konzentration in der kontinentalen Erdkruste zu finden ist, spielt eine wichtige Rolle bei der Datierung des Zeitraums vor der Geburt des Sonnensystems. Hafnium kommt auch in Meteoriten vor, die aus dieser Zeit der Entstehung des Sonnensystems stammen. In diesen Meteoriten befindet sich ein radioaktives Isotop, das 182Hafnium.

    „Durch unsere Arbeiten – basierend auf neuen kernphysikalischen Daten und gepaart mit modernen Computersimulationen zur Entwicklung von Sternen – konnten wir zeigen, dass radioaktives Hafnium während der präsolaren Phase anders entstanden ist, als man bisher angenommen hat. So können wir damit auch die zeitlichen Abläufe besser einordnen“, erklärt Kai Zuber. Damit werde eine über Jahrzehnte alte Unstimmigkeit in der Datierung beseitigt. Man wisse nun, so Zuber, dass es nach der letzten Zugabe von schweren Elementen zur Sonnensystem-Materie eine Inkubationszeit gab, in der Sterne, Sonne und Meteoriten gebildet wurden. „Aus unseren neuen Berechnungen geht hervor, dass diese Phase nicht länger als 30 Millionen Jahre gedauert haben kann“, so der Wissenschaftler der TU Dresden, dessen Arbeit ein wichtiger Beitrag für das Gelingen des Gesamtprojektes war.

    Ein weiteres Ziel des Forschungsteams ist, andere schwere radioaktive Kerne suchen, um ein noch detaillierteres Verständnis für die Vorgeschichte des Sonnensystems zu erhalten und damit die Genauigkeit und Präzision der Zeitabläufe zu verbessern.

    Originalpublikation:
    Science 8. August 2014, VOL 345, ISSUE 6197:
    Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter.
    Maria Lugaro, Alexander Heger, Dean Osrin, Stephane Goriely, Kai Zuber, Amanda I. Karakas, Brad K. Gibsin, Carolyn L. Doherty,John C. Lattanzio, Ulrich Ott

    Informationen für Journalisten:
    Prof. Dr. Kai Zuber
    Technische Universität Dresden
    Institut für Kern- und Teilchenphysik

    Telefon: 0351 463 42250 oder 0351 89738292
    E-Mail: Zuber@physik.tu-dresden.de


    Images

    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).