idw - Informationsdienst
Wissenschaft
Paper of the week: Algen kombinieren bewährte und neue Synthesewege
Pflanzliches Plankton ist nicht nur Fundament der Nahrungskette in den Ozeanen, sondern bindet über Photosynthese auch Kohlenstoff und produziert Sauerstoff. Dafür nutzt das sogenannte Phytoplankton Sonnenergie. Einen beachtlichen Teil des Phytoplanktons machen Cryptophyten, komplexe einzellige Algen, aus. Sie haben ihre Lichterntemechanismen im Lauf der Evolution stark an ihre Umgebung angepasst und können daher zum Beispiel auch grünes Licht nutzen.
Forscher um Prof. Dr. Nicole Frankenberg-Dinkel decken erstmals Gemeinsamkeiten und Unterschiede beim Zusammenbau der Lichterntekomplexe der Cryptophyte Guillardia theta im Vergleich zu Cyanobakterien und Rotalgen auf. Die Veröffentlichung der Ergebnisse in der Zeitschrift „Journal of Biological Chemistry“ gehört zu den zwei Prozent der Publikationen, welche zum „Paper of the week“ gewählt wurden.
Cryptophyten: Matrjoschka-Puppe der Gewässer
Im Gegensatz zu klassischen eukaryotischen Zellen – also allen Zellen mit Zellkern – ähneln Cryptophytenzellen einer russischen Puppe in Form einer Alge in einer Alge. Ihre Entstehung beruht auf der Aufnahme und Integration einer Rotalge in eine eukaryotische Wirtszelle. Dadurch haben Cryptophyten die Fähigkeit zur Photosynthese erworben. Wie ihre Vorfahren, die Rotalgen, nutzen Cryptophyten dabei nicht nur den grünen Farbstoff Chlorophyll zur Lichternte, sondern können durch bläulich oder rötlich gefärbte Proteine – sogenannte Phycobiliproteine – auch das durch Chlorophyll reflektierte grüne Licht als Energiequelle nutzen. Nach der Integration der Rotalge wurde das Rotalgengenom im Laufe der Zeit teilweise reduziert und mit dem Wirtszellengenom vermischt. Dabei fanden eine Reihe von Veränderungen auf genetischer, biochemischer und physiologischer Ebene statt, die eine Anpassung an neue ökologische Nischen ermöglichten. So erhielten die Algen zum Beispiel das Grundprinzip der Photosynthese aufrecht, modifizierten es aber deutlich. Dies betrifft unter anderem die Art und Weise der Lichternte und hierbei vor allem die Phycobiliproteine, die sich stark von ihren Vorfahren aus Cyanobakterien und Rotalgen unterscheiden.
Geschützter Pigmenttransport im Fass
In vielerlei Hinsicht ist noch nicht verstanden, wie die Lichternte von Guillardia theta funktioniert. Wissenschaftler der RUB gewannen nun erste Einblicke in die komplexe Biosynthese cryptophytischer Phycobiliproteine. „Dabei kombiniert Guillardia theta offensichtlich bewährte und neuartige Synthesewege und Enzyme“, sagt Prof. Dr. Nicole Frankenberg-Dinkel. So ähnelt die Synthese des roten, für die Lichtaufnahme verantwortlichen Pigments Phycoerythrobilin der in Cyanobakterien. Dahingegen sind an der Anknüpfung der Pigmente an das Phycobiliproteingerüst sowohl bekannte als auch neuartige Enzyme beteiligt. Eines dieser Anknüpfungsenzyme, das GtCPES, konnten die Wissenschaftler um Prof. Frankenberg-Dinkel im Detail biochemisch und strukturell charakterisieren. In Zusammenarbeit mit Dr. Raphael Gasper-Schönenbrücher aus der Arbeitsgruppe Proteinkristallographie um Prof. Dr. Eckhard Hofmann konnten sie die atomare Struktur von GtCPES aufklären. GtCPES besitzt die Form eines nur am Boden geschlossenen Fasses, in dessen Öffnung ein bestimmtes Pigment, das Phycoerythrobilin, hineinpasst. Mithilfe des Fasses wird das empfindliche Pigment vor äußeren Einflüssen geschützt zum Zielort, dem Phycobiliproteingerüst, transportiert. Die strukturellen Eigenschaften der Fassoberseite gewährleisten dabei den Transfer des Pigments in der richtigen Orientierung an eine definierte Stelle des Proteingerüsts.
Titelaufnahme
Overkamp, K. E., Gasper, R., Kock, K., Herrmann, C., Hofmann, E. und Frankenberg-Dinkel, N. (2014) „ Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins” J Biol Chem. 289, 26691-26707, doi: 10.1074/jbc.M114.591131
Weitere Informationen
Prof. Dr. Nicole Frankenberg-Dinkel, AG Physiologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität; aktuelle Adresse: Abteilung Mikrobiologie, Fachbereich Biologie der TU Kaiserslautern, 67663 Kaiserslautern, Tel.: 0631/205 2353
Prof. Dr. Eckhard Hofmann, AG Proteinkristallographie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24463
Dr. Kristina Overkamp, AG Physiologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-22656, kristina.overkamp@gmx.de
Bildzeilen
Schematische Darstellung einer Cryptophytenzelle
Die Abbildung zeigt schematisch die verschachtelt aufgebaute Cryptophytenzelle, in deren inneren Bereich, dem Plastidenstroma, sich das Anknüpfungsenzym GtCPES mit der Fass-ähnlichen Struktur befindet. Das Plastidenstroma ist der Arbeitsort von GtCPES, wo es für den Transport und die Anknüpfung des magentafarbenen Pigments Phycoerythrobilin an das Phycobiliproteingerüst zuständig ist.
Kristallstruktur von GtCPES
Die Abbildung zeigt die mittels Röntgenstrukturanalyse gelöste atomare Struktur des Proteins GtCPES in monomerer (links) und dimerer (rechts) Form. GtCPES bildet eine Fass-ähnliche Struktur aus, wobei die Unterseite des Fasses geschlossen, die Oberseite geöffnet ist. Im Innenraum des Fasses können Moleküle wie das Pigment Phycoerythrobilin gebunden und transportiert werden.
http://www.jbc.org/content/289/39.cover-expansion - Link zum Cover der aktuellen Ausgabe
http://www.jbc.org/content/289/39/26691.full - Volltext des Papers
Schematische Darstellung einer Cryptophytenzelle
© Kristina Overkamp
None
Kristallstruktur von GtCPES
© Kristina Overkamp
None
Criteria of this press release:
Journalists
Biology
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).