idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/24/2015 09:29

Organbildung durch fließendes Gewebe

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Mit einer Live-Analyse der Augenentwicklung haben Wissenschaftler der Universitäten Heidelberg und Freiburg grundlegende neue Erkenntnisse zur Entstehung der Augenkrankheit Kolobom gewonnen und die bisherige Lehrmeinung zur Entwicklung des Sinnesorgans revidiert. Das Team um die Zellbiologen Dr. Stephan Heermann und Prof. Dr. Jochen Wittbrodt konnte mithilfe von 4D-Mikroskopie am lebenden Organismus zeigen, dass bei der Augenentwicklung gerichtete Gewebeströmungen das Augenbläschen in den Augenbecher umformen. Das ist nicht nur wesentlich für das Verständnis der Entstehung eines Koloboms, sondern es bedeutet auch, dass sich das Auge von Wirbeltieren anders entwickelt als bisher gedacht.

    Pressemitteilung

    Heidelberg, 24. Februar 2015

    Organbildung durch fließendes Gewebe
    Heidelberger Forscher revidieren mit einer Live-Analyse der Augenentwicklung die bisherige Lehrmeinung

    Mit einer Live-Analyse der Augenentwicklung haben Wissenschaftler der Universitäten Heidelberg und Freiburg grundlegende neue Erkenntnisse zur Entstehung der Augenkrankheit Kolobom gewonnen und die bisherige Lehrmeinung zur Entwicklung des Sinnesorgans bei Wirbeltieren revidiert. Das Team um die Entwicklungs- und Zellbiologen Dr. Stephan Heermann und Prof. Dr. Jochen Wittbrodt vom Centre for Organismal Studies Heidelberg (COS) konnte mithilfe von 4D-Mikroskopie am lebenden Organismus zeigen, dass bei der Augenentwicklung gerichtete Gewebeströmungen das Augenbläschen in den Augenbecher umformen. Das ist nicht nur wesentlich für das Verständnis der Entstehung eines Koloboms („Katzenaugenkrankheit“), sondern es bedeutet auch, dass sich das Auge von Wirbeltieren, zu denen auch der Mensch zählt, ganz anders entwickelt als dies seit mehr als 70 Jahren gelehrt wird. Die Forschungsergebnisse wurden im Fachjournal eLife veröffentlicht.

    Bei ihrer Analyse der Augenentwicklung kombinierten die Wissenschaftler, zu denen auch Prof. Dr. Kerstin Krieglstein von der Abteilung Molekulare Embryologie des Instituts für Anatomie und Zellbiologie der Universität Freiburg gehörte, moderne Genetik mit zeitaufgelöster Lebendzellmikroskopie. Dadurch gelang es ihnen, die Dynamik der Organbildung zu erfassen. Sie fanden dabei drei grundlegende Dinge heraus: „Wir wissen nun, dass ein Organ sich fließend bildet und nicht durch einen schrittweisen Aufbau. Wird dieser Fluss gestoppt, kommt es zu einem Kolobom. Und wir haben die Quelle der Stammzellen im Auge gefunden, was eine wichtige Erkenntnis für die Stammzellforschung ist“, erklärt Prof. Wittbrodt.

    Das Auge ist eine Ausstülpung des Gehirns und bildet sich während der Embryonalentwicklung aus einem sackartigen Bläschen, das sich rasch in einen Augenbecher umformt mit der innenliegenden Netzhaut, die außen vom Pigmentepithel umschlossen wird. Misslingt dieser Schritt, kommt es zu großen Problemen, der Augenbecher schließt sich nicht und daraus resultiert ein Kolobom, eine der häufigsten Ursachen für kindliche Blindheit.

    Bisher ging man bei der Transformation zum Augenbecher von einer sogenannten ortsständigen Entwicklung aus: Die innere Seite des Bechers entwickelt sich zur Netzhaut und die äußere Seite zum Pigmentepithel. „Bei der detaillierten Untersuchung dieses Entwicklungsschritts mit Hilfe von hochauflösender Videomikroskopie an lebenden Fischen stellten wir nun fest, dass sich der Augenbecher durch einen dynamischen Fluss von Zellen der äußeren in die innere Seite bildet, also das genaue Gegenteil einer ortsständigen Entwicklung“, erklärt Dr. Heermann. Zudem fanden die Wissenschaftler den Wachstumsfaktor, der den für die Augenentwicklung wesentlichen Fluss von Gewebe steuert. Dabei muss der Signalweg dieses Wachstumsfaktors BMP moduliert werden, damit das Gewebe fließen und so das Bläschen in den Becher transformieren kann. „Ohne diese Modulation bleibt das Gewebe auf der äußeren Seite stecken und beginnt sich dort in die Netzhaut zu entwickeln“, ergänzt Stephan Heermann.

    Eine weitere wichtige Erkenntnis der Studie ist die enge Kopplung von Bewegung (Morphogenese) und Differenzierung. Bisher war bereits bekannt, dass die Differenzierung von Vorläuferzellen in Nervenzellen der Netzhaut im Zentrum des inneren Augenbechers beginnt und sich dann kontinuierlich in die Peripherie fortsetzt. „Die neuen Daten eröffnen nun einen völlig neuen Blickwinkel auf dieses Ereignis“, erklärt Jochen Wittbrodt: Die Zellen, die sich zuerst differenzieren, liegen demnach schon zu Beginn der Entwicklung im inneren Bereich des Augenbechers. Zellen, die erst später differenzieren, fließen erst später in den Augenbecher hinein, wo sie erst dann dem Einfluss von Differenzierungssignalen unterliegen. In der frühen Phase sind diese Zellen daher durch ihre Position den Signalen nicht ausgesetzt. Dies betrifft insbesondere die Stammzellen des untersuchten Modellsystems Fisch.

    „Mit Hilfe der 4D-Mikroskopie konnten wir diese spezielle Population von Zellen nun identifizieren und analysieren“, erläutert Jochen Wittbrodt. Es wurde klar, dass es zwei festgelegte Areale in der äußeren Domäne des sich entwickelnden Augenbechers gibt, in der diese zukünftigen Stammzellen zunächst liegen. Diese Zellen erreichen den Augenbecher als letzte und kommen schließlich an der Grenze zwischen der Netzhaut und dem pigmentierten Epithel zu liegen. „Unsere Befunde beschreiben zum ersten Mal die Herkunft der Stammzellen im Auge von Fischen und implizieren eine frühe Festlegung dieser Zellen. Dies mag auf den ersten Blick von untergeordnetem Interesse für den Menschen erscheinen, der keine aktiven Stammzellen im Auge mehr aufweist. Dennoch sind diese Daten von herausragender Bedeutung für die Stammzellforschung.“

    Darüber hinaus weisen die vorliegenden Ergebnisse hohe biomedizinische Relevanz auf, da sie die Entstehung eines Koloboms erklären, wie Stephan Heermann betont. Durch den beschriebenen zweigeteilten Fluss des Gewebes entsteht auf der unteren Seite des Auges ein Spalt, der Augenbecherspalt. Während der weiteren Entwicklung des Auges ist es nun essentiell, dass sich dieser Spalt schließt, damit das Auge in alle Richtungen sehen kann. „Die vorliegenden Daten zeigen eindrücklich, dass sowohl die Entwicklung des Augenbecherspalts als auch dessen Schluss ganz wesentlich von dem geordneten Gewebefluss abhängen.“ Bleibt der Augenbecherspalt offen, sprechen Mediziner von einem Kolobom.

    Originalveröffentlichung:
    S. Heermann, L. Schütz, S. Lemke, K. Krieglstein, J. Wittbrodt: Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLIFE, February 24, 2015, doi: 10.7554/eLife.05216

    Informationen im Internet:
    Veröffentlichung: http://dx.doi.org/10.7554/eLife.05216
    Filme zur Augenentwicklung:
    http://youtu.be/IGjjRGHDYJE / http://youtu.be/Q6aMe9J6o8Q / http://youtu.be/g4HNk9NzajU

    Kontakt:
    PD Dr. Stephan Heermann, Prof. Dr. J. Wittbrodt
    Centre for Organismal Studies
    Tel. +49 6221 54-8687 (Heermann), -6499 (Wittbrodt)
    stephan.heermann@cos.uni-heidelberg.de, jochen.wittbrodt@cos.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle
    Tel. +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Images

    Die Abbildung zeigt zwei Stadien der Augenentwicklung, das Augenbläschen (oben) und den Augenbecher (unten), jeweils in Bilddaten mit markierten Stammzell
    Die Abbildung zeigt zwei Stadien der Augenentwicklung, das Augenbläschen (oben) und den Augenbecher ...
    Centre for Organismal Studies Heidelberg (COS)
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).