idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/31/2015 11:15

Ab in die Zelle - Fundamentale Erkenntnisse für verbesserten Wirkstofftransport

Silke Paradowski Kommunikation
Technische Universität Darmstadt

    Darmstadt, 31. März 2015. Die Frage, wie komplexe Wirkstoffe so in Zellen eingeschleust werden können, dass sie schnell und einfach zur Verfügung stehen, beschäftigt Chemiker, Biologen und Pharmakologen. Aufbauend auf frühere Forschungen kamen interdisziplinäre Wissenschaftlerteams unter Leitung der Darmstädter Biologin Professorin M. Cristina Cardoso und des Physikers Professor Henry D. Herce wichtige Schritte voran.

    Immer wieder sahen sich Wissenschaftlerinnen und Wissenschaftler mit den besonderen biochemischen Eigenschaften von Zellmembranen konfrontiert, die große Moleküle kaum an den Ort passieren lassen, an dem sie gebraucht werden. Hier ist die Forschung wesentlich vorangekommen. In zwei kürzlich in den Fachzeitschriften „Journal of the American Chemical Society“ und „Angewandte Chemie“ veröffentlichten Aufsätzen stellten die Wissenschaftlerinnen und Wissenschaftler ihre Ergebnisse vor.

    Fettsäuren: die universelle Tür zur Zelle öffnet neue Wege zur Behandlung von Krankheiten
    Ein zentrales Dogma in der Zellbiologie ist, dass elektrisch geladene Moleküle nicht direkt in Zellen eindringen können. Zellen werden von einer Lipidmembran umschlossen, die eine starke Barriere zwischen dem Zellinneren und dem -äußeren bildet. Diese Barriere ist das wichtigste Hindernis für wirkungsvolle therapeutische Substanzen, das Innere der Zelle zu erreichen und sie zu heilen oder – wie im Fall von Krebszellen – zu zerstören.
    Wissenschaftlerinnen und Wissenschaftler der TU Darmstadt und des Rensselaer Polytechnic Institute (Troy, Bundesstaat New York, USA) haben dieses dogmatische Verständnis der Zelle nun teilweise entkräftet. In einer bahnbrechenden Studie, die kürzlich im renommierten „Journal of the American Chemical Society“ veröffentlicht wurde, zeigten sie, dass bestimmte Typen positiv geladener Moleküle – „zelldurchdringende Peptide“ (cell-penetrating peptides, CPPs) – durchlässige Nano-Tunnel ins Zellinnere öffnen und so therapeutische Wirkstoffe in die Zellen einschleusen können.
    Eine wichtige Rolle dabei spielen freie Fettsäuren, die auf den Zellmembranen vorkommen und den Transport dieser geladenen CPPs ermöglichen. Wie die jüngste Studie zeigte, verbinden sie sich auf der Zellmembran mit den CPPs, um den kleinen durchlässigen Tunnel zu bilden. Vorstellen könne man sich das wie die Nadel einer Injektionsspritze, durch die dann therapeutische Wirkstoffe direkt in die Zelle gebracht werden, so Henry D. Herce vom Rensselaer Polytechnic Institute (Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies), der Erstautor der Studie. Dieser besondere Transportmechanismus, den das Wissenschaftlerteam nachwies, lässt Wirkstoffe intakt in die Zelle gelangen, ohne dass sie von der Zelle auf dem Weg abgebaut oder verdaut werden.
    Damit gelang es dem Wissenschaftlerteam, ein lange bestehendes Rätsel zu lösen: Seit mehr als 20 Jahren war bekannt, dass CPPs in Zellen eindringen können, doch wie genau dies funktionierte, blieb eine offene Frage, an der intensiv geforscht wurde.
    Das Verständnis dieser Transportmechanismen ermöglicht es, hochwirkungsvolle Stoffe in die Zelle zu bringen, bei denen das bisher nicht möglich war. Unter anderem eröffnen sich so Chancen auf neue Medikamente gegen Krebs und Infektionskrankheiten wie Malaria.
    Wie die Studie ebenfalls zeigte, funktioniert der Transportmechanismus mit Hilfe von Fettsäuren und CPPs nicht nur im menschlichen Organismus, sondern auch bei Pflanzen, Insekten und anderen Tieren. Die Tür zu den Zellen aller biologischen Reiche steht jetzt offen.

    Größere Zuladung dank Zyklisierung
    Zelldurchdringende Peptide (cell-penetrating peptides, CCP) sind kurze Eiweißketten, die die Membran einer Zelle durchdringen können. Nützlich sind sie für Forschung und Anwendung, weil sie quasi als Vehikel für andere Moleküle fungieren, die an sie angehängt und so in die Zelle transportiert werden können. Allerdings ist der Transport eigentlich auf kleine Moleküle beschränkt. Biologinnen und Biologen der TU Darmstadt und des Max-Delbrück-Centrums für molekulare Medizin (Berlin) zeigten bereits, dass sich Transportgeschwindigkeit und Transportrate von CPPs deutlich verbessern, wenn man sie zyklisiert, also zum Ring umbaut. Nun prüften die Wissenschaftlerinnen und Wissenschaftler, ob sich die Zyklisierung auch eignet, um größere „Frachten“ ins Innere von lebenden Zellen einzuschleusen – ganze Proteine, also große, komplexe Moleküle. Wie die jüngst in der Fachzeitschrift „Angewandte Chemie“ veröffentlichte Studie zeigte, genügt die einfache Strukturänderung zur Kreisform, um dies zu bewerkstelligen und die eingeschleusten Proteine direkt in der Zelle verfügbar zu machen. „Wir haben diverse Stoffe mittels der so modifizierten Peptide in Zellen von Pflanzen, Tieren, Bakterien eingeschleust. Sie alle haben eine Plasmamembran, die wir nun durchdringen können“, sagt Cristina Cardoso, Professorin für Zellbiologie und Epigenetik am Fachbereich Biologie der TU Darmstadt.

    Diese Erkenntnis ist bedeutsam für die Grundlagenforschung, weil so beispielsweise Markierungsstoffe in Zellen eingebracht werden können. Doch es eröffneten sich auch praktische Anwendungsbereiche wie etwa in der Medizin und der Kosmetik, so Cardoso. „Wir sind an Therapien der Zukunft interessiert, zum Beispiel für die lokale Wirkstoffgabe über die Haut durch Cremes.“ Denkbar sei es, über diesen Weg später einmal Medikamente in Hautzellen einzuschleusen oder auch Proteine, die eine kosmetische und therapeutische Funktion hätten.

    Weitere Informationen
    Prof. Dr. M. Cristina Cardoso und Prof. Dr. Henry D. Herce
    Fachbereich Biologie, Forschungsgruppe Zellbiologie und Epigenetik
    Tel.: 06151/16-21882
    E-Mail: cardoso@bio.tu-darmstadt.de und hdherce@gmail.com

    Die Veröffentlichungen
    Herce, H. D., Garcia, A. E. and Cardoso, M. C. (2014). Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J. Am. Chem. Soc. 136: 17459-17467. doi:10.1021/ja507790z.

    Nischan, N.*, Henry, H. D.*, Natale, F., Bohlke, N., Budisa, N., Cardoso, M. C.# and Hackenberger, C. P. R. # (2015). Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew. Chem. Int. Ed. Engl. 54: 1950-1953. doi:10.1002/anie.201410006.
    *first authors; #corresponding authors.

    Diese Arbeiten wurden im Rahmen des interdisziplinären Forschungsschwerpunkts „Bioorthogonale Chemie“ der Deutschen Forschungsgemeinschaft (DFG) gefördert.

    MI-Nr. 21/2015, sip


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Medicine
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).