idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/29/2015 15:22

Im Vergleich: Bewegungssehen von Fliegen und Mäusen erstaunlich ähnlich

Dr. Stefanie Merker Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie

    Auf den ersten Blick haben die Augen von Säugetieren und Insekten nicht allzu viel gemein. Ein Vergleich der neuronalen Schaltpläne zum Erkennen von Bewegungen zeigt jedoch erstaunliche Parallelen zwischen Fliegen und Mäusen. In beiden Arten gab es in den letzten Jahren große Fortschritte in der Erforschung der visuellen Wahrnehmung. Alexander Borst vom Max-Planck-Institut für Neurobiologie in Martinsried und Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt, die beide viel zum aktuellen Wissensstand in Fliegen und Mäusen beigetragen haben, zeigen nun die Parallelen auf.

    Das Auge einer Fliege besteht aus über tausend Einzelfacetten und kann einen Großteil der Kopfoberfläche bedecken. Damit haben Fliegen sozusagen einen Panoramablick. Menschliche Augen sind im Vergleich eher klein, dafür aber beweglich. Farben sehen beide, jedoch unterscheiden sich die Farbspektren. Auch kann das Fliegenhirn über 80 Bilder pro Sekunde getrennt voneinander wahrnehmen, während wir schon bei 24 Bildern pro Sekunde an unsere Grenze kommen. Die Insekten sehen somit schnelle Bewegungen viel besser und präziser als wir Menschen.

    Trotz all dieser Unterschiede ist das "Sehen" für Fliegen und Menschen ein essentieller Sinn – und ihre Augen stehen vor einem ähnlichen Problem: Einzelnen Fotorezeptoren "sehen" nur einzelne Pixel des Gesamtbildes. Formen, Distanzen oder Bewegungen müssen daher aus diesen Einzelinformationen vom Gehirn errechnet werden. Nur wie? Alexander Borst und Moritz Helmstaedter konnten nun in ihrem Vergleich zwischen den Sehsystemen von Fliege und Maus zeigen, dass es für diese Berechnungen anscheinend ein paar sehr effiziente Grundregeln gibt. "Insekten und Säugetiere trennen rund 550 Millionen Jahre Entwicklung und doch gibt es erstaunliche Parallelen darin, wie ihr Gehirn visuelle Bewegungsinformationen verarbeitet", erklärt Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie das Bewegungssehen im Fliegenhirn entschlüsselt. "Es sieht so aus, als hätten wir hier eine sehr robuste Lösung für die neuronale Berechnung von Bewegungsrichtungen", ergänzt sein Kollege Moritz Helmstaedter, der am Max-Planck-Institut für Hirnforschung die neuronalen Schaltpläne im Gehirn von Mäusen untersucht. In ihrem Artikel in der Fachzeitschrift Nature Neuroscience haben die beiden Forscher die System-Parallelen nun herausgearbeitet.

    Trennen, verarbeiten und zusammenführen

    Fotorezeptoren reagieren auf Kontraständerungen – sie erhöhen oder vermindern ihre Aktivität je nachdem, ob ein zuvor heller Punkt dunkel, oder ein dunkler Punkt hell wird. Alexander Borst und sein Team haben vor einigen Jahren im Fliegenauge gezeigt, dass Fotorezeptoren ihre Informationen an zwei Gruppen von Zellen weitergeben: Die eine reagiert nur bei einer Dunkel-Hell-Änderung ("Licht an"), die andere Gruppe nimmt dagegen nur Hell-Dunkel-Änderungen ("Licht aus") wahr. Eine ähnliche Auftrennung der gerichteten Kontrastveränderungen ist in Form der ON- und OFF-Bipolarzellen seit über 40 Jahren aus der Wirbeltier-Netzhaut bekannt. Diese Parallele ist jedoch nur die erste von mehreren Ähnlichkeiten.

    Nach der Aufspaltung in ON- und OFF-Kanäle wird in beiden Kanälen aus den Informationen verschiedener Fotorezeptoren die Bewegungsrichtung errechnet. Nachdem die Richtung der Bewegung ermittelt ist, werden die Informationen aus ON- und OFF-Kanälen wieder zusammengeführt und repräsentieren nun vier orthogonale Richtungen: nach rechts, links, aufwärts oder abwärts.

    Bewährter Schaltplan als Basis

    "Hier enden dann die bisher bekannten Parallelen", resümiert Moritz Helmstaedter. Im Mäusegehirn findet die Fusion aus ON- und OFF-Kanälen noch recht früh in der Verschaltung statt. Die Bewegungsinformation stammt aus einem relativ kleinen Bereich des Sehfeldes und wird nun mit anderen Informationen verknüpft und in höhere Hirnregionen geschickt. In der Fliege hat die so errechnete Bewegungsrichtung dagegen bereits die Nervenzellen erreicht, die Einfluss auf das Verhalten haben: Die Bewegungsinformation stammt aus einem großen Bereich des Sehfeldes und die Nervenzellen können darauf aufbauend zum Beispiel eine Kurskorrektur durch die Flugmuskulatur auslösen.

    Die nun gezeigten Parallelen in der Verarbeitung von Bewegungen könnten zwei Gründe haben: Der neuronale Schaltplan existierte bereits im gemeinsamen Vorgänger dieser doch sehr unterschiedlichen Tierarten. Alternativ haben sich in Wirbeltieren und Insekten die gleichen Schaltpläne unabhängig voneinander entwickelt. Welchen Ursprung die Parallelen auch haben, ihre Existenz zeigt, dass es sich hier um einen sehr robusten und bewährten Verarbeitungsweg handeln muss. "Wir gehen davon aus, dass dieser Schaltplan die bestmögliche Berechnung von Bewegungsrichtungen durch Nervenzellen darstellt – mit so wenigen Zellen wie nötig und so energieeffizient wie möglich", fasst Alexander Borst die Ergebnisse zusammen. Eine Erkenntnis, die für die Entwicklung von künstlichen Systemen, aber auch für das Verständnis von Gehirnfunktionen eine wichtige Grundlage sein kann.

    ORIGINALVERÖFFENTLICHUNG:
    Alexander Borst & Moritz Helmstaedter
    Common circuit design in fly and mammalian motion vision
    Nature Neuroscience, August 2015

    KONTAKT:
    Dr. Stefanie Merker
    Presse- und Öffentlichkeitsarbeit
    Max-Planck-Institut für Neurobiologie, Martinsried
    Tel.: 089 8578 - 3514
    E-Mail: merker@neuro.mpg.de

    Prof. Dr. Alexander Borst
    Abteilung Schaltkreise – Information – Modelle
    Max-Planck-Institut für Neurobiologie, Martinsried
    Tel.: 089 8578 3251
    Email: bost@neuro.mpg.de


    More information:

    http://www.neuro.mpg.de - Webseite des Max-Planck-Instituts für Neurobiologie


    Images

    Die neuronalen Schaltplänen zum Erkennen von Bewegungen sind im Fliegen- und Mausgehirn erstaunlich ähnlich.
    Die neuronalen Schaltplänen zum Erkennen von Bewegungen sind im Fliegen- und Mausgehirn erstaunlich ...
    MPI für Neurobiologie / Schorner
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).