idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/12/2016 09:26

Neils help removing epigenetic marks

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Researchers at the Institute of Molecular Biology have identified two proteins important for the demethylation of DNA

    Scientists at the Institute of Molecular Biology (IMB) in Mainz have identified a missing piece of the puzzle in understanding how epigenetic marks are removed from DNA. The research on DNA demethylation sheds new light on a fundamental process that is important in development and diseases such as cancer.
    Epigenetics is defined by heritable changes in gene expression that do not derive from changes in the DNA sequence itself. Epigenetic processes play a central role in a broad spectrum of diseases, such as cardiovascular disease, neurodegenerative disorders and cancer. One of the most prominent epigenetic processes is DNA methylation, where one of the four bases of animal DNA is marked by a methyl group. DNA methylation typically reduces the activity of surrounding genes.

    A lot is known about how methyl marks are put onto the DNA, but how they are removed – a process called DNA demethylation – and, thus, how genes are reactivated is still not well understood. In their recent study, published in Nature Structural and Molecular Biology, IMB scientists have identified two proteins, Neil1 and Neil2 that are important for the demethylation of DNA. "These proteins are a missing link in the chain of events that explain how DNA can be efficiently demethylated," said Lars Schomacher, first author on the paper.

    Intriguingly, DNA demethylation has been shown to involve proteins of the DNA repair machinery. Thus epigenetic gene regulation and genome maintenance are linked. Schomacher and his colleagues identified in Neil1 and Neil2 two more repair factors that not only protect the DNA’s integrity but are also involved in DNA demethylation. The researchers showed that the role of Neils is to boost the activity of another protein, Tdg, which is known to be of central importance for DNA demethylation.

    Both the Neils and Tdg are essential proteins for survival and development. Schomacher et al. carried out experiments where they removed either one of these proteins in very early frog embryos. They found that the embryos had severe problems developing and died before reaching adulthood.

    Failure in setting and resetting methyl marks on DNA is involved in developmental abnormalities and cancer, where cells forget what type they are and start to divide uncontrollably. Understanding which proteins are responsible for DNA demethylation will help us to understand more about such disease processes, and may provide new approaches to develop treatments for them.

    Further details
    Schomacher L*, Han D*, Musheev MU*, Arab K, Kienhöfer S, von Seggern A and Niehrs C (2016). Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. Nature Struct Mol Biol, DOI: 10.1038/nsmb.3151 [Epub ahead of print]. (* indicates equal contribution)

    Further information about research in the Niehrs group can be found at http://www.imb.de/niehrs.


    About the Institute of Molecular Biology gGmbH

    The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011 on the campus of Johannes Gutenberg University Mainz (JGU). Research at IMB concentrates on three cutting-edge areas: epigenetics, developmental biology, and genome stability. The institute is a prime example of a successful collaboration between public authorities and a private foundation. The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of ten years to cover the operating costs for research at IMB, while the state of Rhineland-Palatinate provided approximately EUR 50 million for the construction of a state-of-the-art building.
    For more information about IMB, please visit http://www.imb.de.

    About the Boehringer Ingelheim Foundation

    The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical, and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht (1931-1991), a member of the shareholder family of the company Boehringer Ingelheim. With the PLUS 3 Perspectives Program and the Exploration Grants, the foundation supports independent group leaders. It also endows the internationally renowned Heinrich Wieland Prize as well as awards for up-and-coming scientists. In addition, the foundation pledged to donate EUR 100 million to finance the scientific running of the IMB at Johannes Gutenberg University Mainz for ten years. In 2013, the Boehringer Ingelheim Foundation donated a further EUR 50 million to Mainz University.
    For more information about the Boehringer Ingelheim Foundation, please visit http://www.boehringer-ingelheim-stiftung.de.


    More information:

    http://www.uni-mainz.de/presse/20060_ENG_HTML.php - press release ;
    http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.3151.html - article ;
    https://www.imb-mainz.de - Institute of Molecular Biology (IMB)


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).