idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/22/2016 11:09

Amplification of Sound Waves at Extreme Frequencies

Saskia Donath Pressestelle des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

    An electric current through a semiconductor nanostructure amplifies sound waves at ultrahigh frequency. This method allows for novel, highly compact sources of ultrasound, which can serve as diagnostic tool for imaging materials and biological structures with very high spatial resolution.

    Ultrasound is an acoustic wave at a frequency well above the human audible limit. Ultrasound in the megahertz range (1 MHz = 106 Hz = 1 million oscillations per second) finds broad application in sonography for, e.g., medical imaging of organs in a body and nondestructive testing of materials. The spatial resolution of the image is set by the ultrasound wavelength. To image objects on the nanoscale (1 nanometer = 10to the-9 m = 1 billionth of a meter), sound waves with a frequency of several hundreds of gigahertz (1 gigahertz (GHz) = 1000 MHz) are required. To develop such waves into a diagnostic tool, novel sources and sound amplification schemes need to provide sufficient sound intensities.

    In a recent publication (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), researchers from the Max-Born-Institut in Berlin together with colleagues from the Paul-Drude-Institut, Berlin, and the École Normale Supérieure, Paris, have demonstrated a new method for sound amplification in a specially designed semiconductor structure consisting of a sequence of nanolayers. Sound waves with a frequency of 400 GHz are generated and detected with short optical pulses from a laser. The sound is amplified by interaction with an electric current traveling through the semiconductor in the same direction as the sound waves. The sound amplification is based on a process called "SASER", the Sound Amplification by Stimulated Emission of Radiation, in full analogy to the amplification of light in a laser. The sound wave stimulates electrons moving with a velocity higher than the sound velocity, to go from a state of high energy to a state of lower energy and, thus, make the sound wave stronger. To achieve a net amplification, it is necessary that there are more electrons in the high-energy than in the lower-energy state. In this way, a 400 GHz sound wave is amplified by a factor of two.

    The present work is a proof of principle. For a usable source of high-frequency sound waves, it is necessary to further increase the amplification, which should be possible by improving the design of the structure and, most importantly, better cooling of the semiconductor device. Once such a source is available, it can be used for extending the spatial resolution of sonography towards the scale viruses, a length scale much shorter than the wavelength of visible light.
    Fig. 1: Changes of the sample reflectivity as a function of the delay time after the pump pulse. The observed oscillations are proportional to the instantaneous amplitude of the sound wave. The blue curve shows the results without the current through the superlattice, the red curve with a current of 1 A. With current the amplitude is always larger than without current. The amplification (the ratio between the red and blue curves) is most pronounced at delay times of 300 ps (1 picosecond (ps) is 10-12 s, one millionth of a millionth of a second), since the amplification takes time.

    Original Publication: Physical Review Letters 116, 075504
    Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice

    Keisuke Shinokita, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Rudolf Hey, Christos Flytzanis

    Contact
    Prof. Klaus Reimann Tel. 030 6392 1476
    Dr. Michael Wörner Tel. 030 6392 1470
    Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

    This article was chosen as an Editor's suggestion, see also: Pumping up the sound


    More information:

    http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.116.075504


    Images

    Capture under the pressinformation.
    Capture under the pressinformation.
    Source: Fig.: MBI


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).