idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/04/2016 10:42

Graphen gleitet fast reibungslos über Gold

Kim-Astrid Magister Pressestelle
Technische Universität Dresden

    cfaed-Wissenschaftler Xinliang Feng ist Koautor einer Publikation im Wissenschaftsjournal Science

    Graphen, eine besondere Form von Kohlenstoff, bietet vielfältige Potenziale für die Nutzung als Beschichtung von Maschinenteilen und im Bereich der elektronischen Schaltungen. Ein internationales Forscherteam unter Leitung von Physikern der Universität Basel, in das auch Wissenschaftler der TU Dresden (Dr. Andrea Benassi und Prof. Xinliang Feng) eingebunden sind, hat die Gleitfähigkeit dieses Materials im Nanometerbereich untersucht. Wie die Forscher in der Fachzeitschrift Science berichten, trägt das Material in seiner Funktion als Beschichtung zu einer drastischen Verringerung des Energieverlustes innerhalb von Maschinen bei, da es fast keine Reibung hervorruft.
    Zukünftig könnte Graphen als extrem dünne Beschichtung eingesetzt werden, wodurch der Energieverlust zwischen mechanischen Teilen auf nahezu Null gesenkt werden könnte. Dieser Effekt beruht auf der außergewöhnlich hohen Gleitfähigkeit – die Wissenschaftler sprechen von „Superschmierfähigkeit“, englisch „superlubricity“ –der Kohlenstoffmodifikation Graphen. Die Nutzung dieser Eigenschaft für mechanische und elektromechanische Anlagen würde nicht nur deren Energieeffizienz verbessern, sondern auch die Lebensdauer der Geräte erheblich verlängern.

    Die Ursachen der extremen Gleitfähigkeit ergründen
    Die internationale Physikergruppe untersuchte die überdurchschnittliche Gleitfähigkeit des Graphens mittels eines zweigleisigen Ansatzes – einer Kombination von Experimenten und Berechnungen. Hierfür verankerten sie Streifen aus einer einzelnen Lage von Kohlenstoffatomen – sogenannte Graphen-Nanobänder – an der scharfen Spitze eines Rasterkraftmikroskops und zogen sie über eine Goldoberfläche. Durch computerbasierte Berechnungen wurden die Wechselwirkungen zwischen den Oberflächen während dieser Bewegung untersucht. Mit diesem Ansatz hofft das Forscherteam, die Ursachen der Supra-Gleitfähigkeit zu verstehen, denn bislang gab es nur wenig Forschung auf diesem Gebiet.
    Von der Untersuchung der Graphen-Nanobänder versprechen sich die Forscher aber noch deutlich mehr, als nur das Gleitverhalten zu ergründen. Die Messung der mechanischen Eigenschaften des kohlenstoffbasierten Materials ist auch sinnvoll, weil es für eine ganze Reihe von Anwendungen im Bereich der Beschichtungen und mikromechanischen Schaltern exzellente Potenziale bietet. In Zukunft könnten auch elektronische Schalter durch nano-mechanische Schalter ersetzt werden, welche weniger Energie zum Ein- und Ausschalten verbrauchen würden als herkömmliche Transistoren.
    Die Experimente zeigten eine fast perfekte, reibungsfreie Bewegung. Es ist möglich, die Graphen-Nanobänder mit einer Länge zwischen 5 und 50 Nanometern mittels extrem geringer Kräfte (2 bis 200 Pikonewton; 1 Pikonetwon entspricht einem billionstel Newton, 10−12 N) zu bewegen. Es wurde eine hochgradige Übereinstimmung zwischen den experimentellen Beobachtungen und der Computersimulation festgestellt.
    Eine Diskrepanz zwischen dem berechneten Modell und der Wirklichkeit tritt nur bei größeren Abständen von fünf oder mehr Nanometern zwischen Messspitze und Goldoberfläche auf. Dies erklärt sich vermutlich dadurch, dass die Ränder der Graphen-Nanobänder mit Wasserstoff gesättigt sind, was innerhalb der Simulationen nicht berücksichtigt wurde.
    "Unsere Ergebnisse helfen uns, die Veränderung von Chemikalien auf der Nanoebene besser zu verstehen und den Weg zur Herstellung reibungsfreier Beschichtungen zu ebnen", schreiben die Forscher.
    Mehr Informationen: "Superlubricity of graphene nanoribbons on gold surfaces" Science, DOI: 10.1126/science.aad3569

    Informationen für Journalisten:
    Prof. Xinliang Feng
    Technische Universität Dresden
    cfaed Chair of Molecular Functional Materials
    01062 Dresden
    Phone: +49 351 463-43251
    Mobil: 0151 – 59082943
    Email: xinliang.feng@tu-dresden.de


    More information:

    https://cfaed.tu-dresden.de/press-releases-201/feng-science-paper-superlubricity


    Images

    Ein Graphen-Nanoband wurde an der Spitze eines Rasterkraftmikroskops verankert und über eine Goldoberfläche gezogen. Die beobachtete Reibungskraft war äußerst gering.
    Ein Graphen-Nanoband wurde an der Spitze eines Rasterkraftmikroskops verankert und über eine Goldobe ...
    Universität Basel, Fachbereich Physik
    None


    Criteria of this press release:
    Journalists
    Electrical engineering, Materials sciences, Mechanical engineering, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).