idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/19/2016 11:42

Wärmekapazität von kondensiertem Licht vermessen

Johannes Seiler Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Flüssiges Wasser ist ein sehr guter Wärmespeicher – das weiß jeder, der eine Wärmflasche sein Eigen nennt. Sobald Wasser jedoch siedet oder gefriert, lässt seine Speicherfähigkeit schlagartig nach. Ein ganz ähnliches Verhalten haben Physiker der Universität Bonn nun bei einem Gas aus Lichtteilchen beobachtet. Ihre Erkenntnisse lassen sich beispielsweise nutzen, um ultragenaue Thermometer herzustellen. Die Arbeit erscheint im renommierten Fachjournal „Nature Communications“.

    Wasserdampf wird unter 100 Grad Celsius flüssig – er kondensiert. Physiker sprechen von einem Phasenübergang. Dabei ändern sich sprunghaft bestimmte thermodynamische Eigenschaften des Wassers. Beispielsweise kann es auf einen Schlag doppelt so viel Wärmeenergie speichern wie noch im gasförmigen Zustand.

    Licht besteht aus winzigen unteilbaren Portionen, den Photonen. Auch diese können unter geeigneten Bedingungen kondensieren, wenn man sie weit genug abkühlt. Viele tausend dieser Lichtpakete verschmelzen dann plötzlich zu einer Art Super-Photon mit ungewöhnlichen Eigenschaften – einem so genannten Bose-Einstein-Kondensat.

    Auch Photonengas ändert Wärmespeichereigenschaften sprunghaft

    Die Physiker der Universität Bonn konnten nun zeigen, dass sich das Photonengas bei diesem Phasenübergang gemäß den theoretischen Vorhersagen von Bose und Einstein verhält: Ähnlich wie Wasser ändert es sprunghaft seine Wärmekapazität, also die Fähigkeit, thermische Energie zu speichern. „Dieses Verhalten kannte man bereits von kondensierenden Atomen”, erklärt Prof. Dr. Martin Weitz vom Institut für Angewandte Physik. „Es ist aber das erste Mal, dass dieses Phänomen für ein Kondensat aus Licht nachgewiesen wurde.”

    Auch Atome bilden ein Bose-Einstein-Kondensat, wenn man sie sehr stark abkühlt und gleichzeitig genügend von ihnen auf kleinem Raum konzentriert. Sie werden dann plötzlich ununterscheidbar: Sie verhalten sich wie ein einziges Riesen-Atom. Schon vor 20 Jahren hatten Physiker nachweisen können, dass sich bei diesem Phasenübergang die Wärmekapazität der Atome plötzlich ändert. Wie stark diese Änderung ist, lässt sich bei Atomen aber nur ungenau messen. Das ist bei unserem Kondensat wesentlich besser möglich”, betont Dr. Jan Klärs, der inzwischen aus Bonn an die ETH Zürich gewechselt ist.

    Die Wärmekapazität eines Stoffes berechnet sich aus der Energie, die nötig ist, um ihn um ein Grad zu erwärmen. Üblicherweise misst man dazu die Temperatur der Substanz vor und nach Zuführung einer definierten Wärmemenge. Mit einem Thermometer lässt sich die Temperatur eines Gases aus Licht jedoch nicht messen. Allerdings ist das auch gar nicht nötig. „Um die Temperatur des Gases zu bestimmen, muss man lediglich die unterschiedlichen Wellenlängen der Lichtteilchen kennen – die Verteilung ihrer Farben”, sagt Klärs. Und diese lässt sich mit den heute verfügbaren Methoden extrem genau ermitteln.

    „Unsere Ergebnisse für die Änderung der Wärmekapazität beim Übergang vom Photonengas zum Bose-Einstein-Kondensat decken sich exakt mit den theoretischen Vorhersagen”, erklärt Tobias Damm vom Institut für Angewandte Physik. „Die Genauigkeit dieser Methode ist so hoch, dass sie sich sehr gut für die Präzisionsmessung bestimmter thermodynamischer Naturkonstanten eignet.”

    Der Wärmeinhalt des Photonengases ändert sich nicht nur bei der Kondensation zum Super-Photon, sondern auch kontinuierlich mit der Umgebungstemperatur. Die Bonner Physiker hoffen daher, dass sich ihre Erkenntnisse auch für den Bau hochpräziser Thermometer nutzen lassen.

    Publikation: Tobias Damm, Julian Schmitt, Qi Liang, David Dung, Frank Vewinger, Martin Weitz & Jan Klärs: Calorimetry of a Bose-Einstein-condensed photon gas; Nature Communications, DOI: 10.1038/NCOMMS11340

    Kontakt:

    Prof. Dr. Martin Weitz
    Institut für Angewandte Physik der Universität Bonn
    Tel. 0228/73-4837 oder -4836
    E-Mail: Martin.Weitz@uni-bonn.de

    Tobias Damm
    Institut für Angewandte Physik der Universität Bonn
    Tel. 0228/73-3453
    E-Mail: damm@iap.uni-bonn.de

    Dr. Julian Schmitt
    Institut für Angewandte Physik der Universität Bonn
    Tel. 0228/73-3453
    E-Mail: schmitt@iap.uni-bonn.de


    Images

    An der Messapparatur: Prof. Dr. Martin Weitz, Tobias Damm, David Dung, Dr. Julian Schmitt und Dr. Frank Vewinger vom Institut für Angewandte Physik der Universität Bonn.
    An der Messapparatur: Prof. Dr. Martin Weitz, Tobias Damm, David Dung, Dr. Julian Schmitt und Dr. Fr ...
    © Foto: Volker Lannert/Uni Bonn
    None

    Das Team um Prof. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn hat die Temperatur eines Gases aus Licht gemessen, wenn es kondensiert.
    Das Team um Prof. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn hat die Tempe ...
    © Symbolische Darstellung: Tobias Damm
    None


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).