idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/12/2016 08:35

Out of the Ocean – How algae convert sea water into chalk shells

Dipl. Ing. agr. Ursula Ross-Stitt Büro für Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie

    An international research team headed by André Scheffel from the Max Planck Institute of Molecular Plant Physiology and by scientists from the Biomaterials department of the Max Planck Institute of Colloids and Interfaces analyzed the chalk production in a group of marine algae known as coccolithophores. These algae have a strong influence on our climate and their fossilized chalk products give information about past environmental conditions. The researchers found a so far unknown cellular component, which appears to be the main calcium hub in the cells and to influence the incorporation of environmental traces into the chalk. Their research is published in the journal Nature Communications

    Algae are true all-rounders. In East-Asian countries they are a staple food. But this is not all they have to offer. They are fascinating and highly adaptable organisms, living almost everywhere there is water – in the ocean, in lakes, or even in puddles and in the snow. With ca. 40.000 known species, algae play an essential role in the environment and for humanity.
    The marine microalga Emiliania huxleyi is one of the key phytoplankton species and lives in a solid house assembled from chalky platelets which scientists refer to as coccoliths. After death of the algae, the chalky shell sinks to the ocean floor and becomes an abundant component of sea-floor carbonates. Over millions of years these shells have accumulated to form thick sediment layers, with the chalk cliff of the German island of Rügen being a prominent example. Due to the incorporation of trace elements from the waters surrounding the cells into the chalk structures, which are produced inside the cells, the chemical composition of these sediments can give information about the climate and environment of the past.
    Nevertheless, the mechanism of chalk production in calcareous algae (“coccolithophores”) is poorly understood so far. An international research team led by André Scheffel from the MPIMP and Damien Faivre from the MPICI in Potsdam-Golm has now analyzed the processes of chalk production in the dominant marine alga Emiliana huxleyi. This unicellular alga produces one chalk disk after the other inside the cell and moves them outside upon completion. In this way the outer shell is produced. The production of each chalk scale takes place inside a membrane-bound compartment, called the coccolith vesicle.
    Based on microscopic and spectroscopic techniques the team was able to identify an additional, to date undiscovered calcium reservoir, which feeds coccolith formation with calcium and presumably the impurities that have been detected in mature coccolith chalk. Besides calcium this compartment contains other elements, including polyphosphates, which enable accumulation of calcium without its precipitation.
    “The discovery of this new component in the calcium metabolism of the alga Emiliania huxleyi gives new opportunities to understand the production of coccoliths and the integration of trace elements”, explains Sanja Sviben, first author of this study. The insights emerging from this study may bring the coccolith composition and seawater chemistry into a mechanistic framework and help in understanding why and how calcification will be affected by changing environmental conditions.
    Beside the reconstruction of past environmental conditions, it will be possible to develop predictive models of the future of calcification and the corresponding impact on climate. “Our results can be used to clarify how ocean acidification can influence the chalk production and how this process can adapt to future conditions”, describes André Scheffel. Being able to predict those future changes is important, due to the impact coccolithophores have on the global carbon cycle. They bind million tons of carbon dioxide yearly, removing the greenhouse gas from the atmosphere. Each chalky coccolith that ends up on the sea-floor removes carbon from the atmosphere-ocean cycle for thousands of years. The acidification of the oceans due to raising atmospheric carbon dioxide concentrations poses a threat to biological chalk formation and the consequences of this on our climate are poorly understood.

    Contact
    Dr. André Scheffel
    Max Planck Institute of Molecular Plant Physiology
    Tel. 0331/567 8358
    scheffel@mpimp-golm.mpg.de

    Dr. Ulrike Glaubitz
    Public Relations
    Max Planck Institute of Molecular Plant Physiology
    Tel. 0331/567 8275
    glaubitz@mpimp-golm.mpg.de
    http://www.mpimp-golm.mpg.de

    Katja Schulze
    Public Relations
    Max Planck Institute of Colloids and Interfaces
    Tel. 0331/567 9203
    katja.schulze@mpikg.mpg.de
    http://www.mpikg.mpg.de

    Original publication
    Sviben, S., Gal., A., Hood., M., A., Bertinetti, L., Politi, Y., Bennet, M., Krishnamoorthy, P., Schertel, A., Wirth, R., Sorrentino, A., Pereiso, E., Faivre, D., Scheffel, A.
    A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga.
    Nature Communications, 14. April 2016, doi: 10.1038/ncomms11228


    More information:

    http://www.mpimp-golm.mpg.de/2064848/pm-kalkalgen


    Images

    Emiliana huxleyi and other marine algae resides within chalk shells called coccoliths. Fossil coccoliths open a window to the climate in the past while contemporary coccoliths influences our climate.
    Emiliana huxleyi and other marine algae resides within chalk shells called coccoliths. Fossil coccol ...
    Source: André Scheffel, MPI-MP


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Zoology / agricultural and forest sciences
    transregional, national
    Miscellaneous scientific news/publications, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).