idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/13/2016 14:05

Laserpulse: Dirigenten für Protonen

Dr. Olivia Meyer-Streng Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Mit ultrakurzen Lichtblitzen hat es ein internationales Team des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians Universität München geschafft, die Anordnung der Atome in Kohlenwasserstoffmolekülen zu manipulieren.

    Im Mikrokosmos kann Licht das Spiel der Atome und Moleküle dirigieren. Der Mensch schafft es, in dieses Spiel einzugreifen. Forscher des Labors für Attosekundenphysik (LAP) des Max-Planck-Instituts für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU) und des Departments für Chemie der LMU haben mit Licht Kohlenwasserstoffe umgebaut. Dazu lösten sie mit ultrakurzen Laserpulsen eines der äußeren Wasserstoffatome an einem Kohlenwasserstoffmolekül und dirigierten es anschließend auf die gegenüberliegende Seite. Dort dockte das Proton wieder an. Die Methode hat das Potential, in Zukunft neue Stoffe mit Hilfe von Licht zu synthetisieren.

    Alles passiert unvorstellbar schnell – innerhalb von wenigen Millionsteln einer Milliardstel Sekunde. Ein ultrakurzer Laserpuls trifft ein Acetylen-Molekül. Das symmetrisch, langgestreckte Kohlenstoffmolekül mit jeweils einem Wasserstoffatom an seinen äußeren Flanken, kommt ins Taumeln, und wird ionisiert, wodurch sich das Molekül im Laserfeld ausrichtet. Anschließend löst sich blitzschnell auf der einen Seite des Kohlenstoffs ein Wasserstoffatom, wandert auf die andere Seite des Moleküls und dockt dort an.

    Die Richtung dieser Reaktion haben Forscher des Labors für Attosekundenphysik des MPQ und der LMU und des Departments für Chemie der LMU gesteuert. Die experimentellen Beobachtungen und ihr grundlegender Mechanismus wurden mittels quantenmechanischer Simulationen aus der Gruppe von Prof. de Vivie-Riedle erklärt. Mit einem, nur wenige Femtosekunden langen, Laserpuls beeinflussten die Physiker die Schwingungen eines Acetylen Moleküls so, dass sie noch mit dem gleichen Lichtpuls das Ablösen eines bestimmten, d.h. des linken oder des rechten, Wasserstoffatoms erzwingen konnten. Die Wanderung des Wasserstoffatoms auf die andere Seite fand dann im ionischen Zustand des Moleküls von alleine statt. Es bildet sich Vinyliden. Neben Acetylen haben die Forscher auch Allene, das ebenfalls zur Gruppe der Kohlenwasserstoffe gehört, auf diese Weise umgebaut. Sie konnten damit zeigen, dass ihre Methode auch für längerkettige Kohlenwasserstoffe funktioniert.

    Bewegungen von Elektronen und Atomen sind elementare Vorgänge bei chemischen Prozessen in der Natur. Mit Lasertechnologie ist der Mensch heute schon bedingt in der Lage, auf diese Bewegungen Einfluss zu nehmen. „Unsere Experimente haben gezeigt, dass wir nicht nur Elektronen im Mikrokosmos dirigieren können, sondern auch die rund 2000 Mal schwereren Wasserstoffatome“, erklärt Prof. Matthias Kling, der Leiter der Arbeitsgruppe Ultraschnelle Nanophotonik im LAP-Team. „Für den zugrunde liegenden Mechanismus ist in beiden Fällen die Wellennatur der kontrollierten Teilchen verantwortlich“ erläutert Prof. Regina de Vivie-Riedle.

    Die Forscher haben es mit ihrem Versuch geschafft, mit Licht Materie neu zu definieren. „Wir hoffen, mit unserer Methode künftig die verschiedensten Arten von Stoffen zerlegen und neu zusammensetzen zu können“, sagt Kling. Eine solche, lichtgesteuerte Synthese von Materie könnte es künftig ermöglichen, ganz neue Stoffe zu erschaffen. Gerade in der Medizin und dem damit verbundenen Design neuer Medikamente ist diese Perspektive besonders reizvoll. Thorsten Naeser

    Originalveröffentlichung:
    M. Kübel, R. Siemering, C. Burger, Nora G. Kling, H. Li, A. S. Alnaser, B. Bergues, S. Zherebtsov, A. M. Azzeer, I. Ben-Itzhak, R. Moshammer, R. de Vivie-Riedle, and M. F. Kling
    Steering Proton Migration in Hydrocarbons Using Intense Few-Cycle Laser Fields
    Physical Review Letters 12. Mai 2016; doi: 10.1103/PhysRevLett.116.193001

    Kontakt:

    Prof. Dr. Matthias Kling
    Ultraschnelle Nanophotonik
    Labor für Attosekundenphysik
    Department für Physik
    Ludwig-Maximilians-Universität München
    Am Coulombwall 1
    Max-Planck-Institut für Quantenoptik
    Hans-Kopfermann-Str. 1
    85748 Garching b. München
    Telefon: +49 (0)89 / 32 905 -234
    E-Mail: matthias.kling@mpq.mpg.de

    Prof. Dr. Regina de Vivie-Riedle
    Department Chemie und Biochemie
    Ludwig-Maximilians-Universität München
    Telefon: +49 (0)89 / 2180 -77533
    Telefax: +49 (0)89 / 2180 -77133
    E-Mail: regina.de_vivie@cup.uni-muenchen.de

    Dr. Olivia Meyer-Streng
    Presse-und Öffentlichkeitsarbeit
    Max-Planck-Institut für Quantenoptik, Garching b. München
    Telefon: +49 (0)89 32 905 -213
    E-Mail: olivia.meyer-streng@mpq.mpg.de


    Images

    Laserphysiker dirigieren mit Licht Atome in Molekülen: Ein Laserpuls trifft auf ein Kohlenstoffmolekül, löst von dessen einem Ende ein Wasserstoffatom, das dann am anderen Ende wieder andockt.
    Laserphysiker dirigieren mit Licht Atome in Molekülen: Ein Laserpuls trifft auf ein Kohlenstoffmolek ...
    Source: Bild: Alexander Gelin


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).