idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/07/2016 11:39

Nondestructive Micromagnetic Materials Characterization at High Measuring Speed

Sabine Poitevin-Burbes Presse und Öffentlichkeitsarbeit
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

    The Fraunhofer Institute for Nondestructive Testing IZFP carries out research and development activities in the field of nondestructive testing processes along the entire materials value chain. For customers in the automobile, aerospace, rail, energy, construction and agriculture industries, the institute offers a wide range of NDT expertise and technologies. At the 19th World Conference on Non-Destructive Testing, our researchers will be presenting a nondestructive micromagnetic materials characterization method by means of a variant of 3MA approach - the so-called 3MA-X8.

    Iron and steel parts, as well as components used in machines, vehicles and plant engineering are often made of ferromagnetic materials. These components are heat-treated and machined in order to create the desired functional characteristics. Determination of the quality of the surface layer properties requires suitable inspection methods. Micromagnetic methods offer a fast and nondestructive way to characterize and analyze materials properties during or directly after a production step with up to 100 percent process integration.

    3MA is an acronym for "micromagnetic multiparameter, microstructure and stress analysis". The 3MA measuring systems of Fraunhofer IZFP determine, in fractions of a second, different material properties, e.g. hardness, case hardening depth. In addition, a variety of other magnetic parameters is determined which reflect different material properties and stress states. The 3MA method determines the relationship between the magnetic characteristics measured and desired result parameters (e.g. hardness, case depth, tensile strength, yield strength, residual stresses) on the basis of a defined calibration sample set. This is done using mathematical-statistical tools such as pattern recognition and regression analysis. Finally, an application of the calibration in order to inspect the calibrated component, finished and semi-finished product types is possible.
    The 3MA-X8 measuring system implements the 3MA approach with particular emphasis on the possibility of a simple calibration, very high measuring speed and variable sensor design. In addition, simultaneous operation of up to eight sensors is possible with a device to cover several measuring positions or accelerate surface scans.
    The application potential of this 3MA variant is discussed in this contribution regarding different application examples, and a comparison with the original 3MA approach is provided.


    More information:

    http://www.izfp.fraunhofer.de


    Images

    3MA-X8 System
    3MA-X8 System
    Source: Fraunhofer IZFP


    Criteria of this press release:
    Journalists
    Economics / business administration, Materials sciences
    transregional, national
    Miscellaneous scientific news/publications, Scientific conferences
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).