idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/11/2016 11:50

Es wird wärmer: Annäherung an unbekannte Materie

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Kieler Physiker erreichen erstmals exakte Simulationen der warmen dichten Materie

    Auf der Erde kommt dieser Zustand auf natürliche Weise gar nicht vor, dennoch ist er in der Plasmaphysik und der Materialwissenschaft aktuell ein „heißes Thema“: warme dichte Materie. Seine besonderen Eigenschaften machen es extrem schwierig, den Materiezustand experimentell oder mit theoretischen Modellen zu untersuchen. Ein Forscherteam der Christian-Albrechts-Universität zu Kiel (CAU) hat jetzt zusammen mit Kollegen vom Los Alamos National Laboratory (USA) und dem Imperial College London einen Weg gefunden, genaue Simulationen der warmen dichten Materie vorzunehmen.

    Sie könnten in Zukunft dabei helfen, zentrale Fragen der Astrophysik zu beantworten oder wichtige Erkenntnisse für neue Verfahren der Energiegewinnung zu gewinnen. Die Ergebnisse wurden in der aktuellen Ausgabe der Fachzeitschrift „Physical Review Letters“ veröffentlicht.

    Tausendmal dichter als gewöhnliche Festkörper und zehntausendmal wärmer als die Raumtemperatur – die warme dichte Materie unterscheidet sich komplett von den auf der Erde vorkommenden festen, flüssigen oder gasförmigen Aggregatzuständen oder von Plasmen. Während sie im Kern von Riesenplaneten oder in Sternatmosphären in natürlicher Form existiert, kann sie auf der Erde nur künstlich im Labor über Kompression durch intensive Laserstrahlung hergestellt werden. Unter diesen extremen Bedingungen besteht ein komplizierter Zusammenhang zwischen Temperatur- und Quanteneffekten sowie zu der elektrischen Wechselwirkung der geladenen Teilchen. Dies macht die Simulation dieses Materiezustandes besonders aufwändig und die Untersuchung seiner physikalischen Eigenschaften zu einer großen Herausforderung. „Wenn wir mehr über die warme dichte Materie wissen, hilft uns das bei der Klärung von fundamentalen Fragen der Astrophysik – zum Beispiel bei der Bestimmung des Alters von Sternen, ihrer chemischen Zusammensetzung oder ihrer Wärmeleitfähigkeit“, sagt Michael Bonitz, Professor für Theoretische Physik an der CAU und Leiter des Forschungsteams. Außerdem sind genaue Informationen über die warme dichte Materie entscheidend für künftige technische Anwendungen, wie etwa die Energiegewinnung durch die sogenannte Trägheitsfusion.

    Theoretische Modelle, die bisher in der Forschung genutzt wurden, um warme dichte Materie zu beschreiben, lieferten nur unsichere Ergebnisse. Computersimulationen erwiesen sich als so aufwändig, dass sie nur für sehr kleine Systeme aus sehr wenigen Teilchen praktikabel waren. Die Kieler Wissenschaftler wählten einen anderen Ansatz und entwickelten stattdessen zwei einzelne, sich ergänzende Simulationstechniken, mit denen sie sehr viel genauer Daten berechnen können. In einem zweiten Schritt entdeckten sie jetzt eine Lösung, die es ihnen ermöglicht, die Simulationsergebnisse für kleine Systeme sehr genau auf beliebig große Systeme zu übertragen, wodurch erstmals ein direkter Vergleich mit realistischen experimentellen Systemen möglich wird. Die dafür benötigten, aufwändigen Berechnungen erforderten den Einsatz von Supercomputern mit besonders hoher Rechenleistung. „Wenn man alle diese Rechnungen nacheinander auf nur einem Rechner vornehmen würde, müsste dieser 200 Jahre am Stück arbeiten“, so Bonitz. Mit ihren neuen Erkenntnissen liegen nun zum ersten Mal exakte Daten für die thermodynamischen Eigenschaften der Elektronen in warmer dichter Materie vor. Laut Bonitz „ein entscheidender Beitrag für zukünftige Forschungen über warme dichte Materie“.

    Original-Publikation:
    Tobias Dornheim, Simon Groth, Travis Sjostrom, Fionn D. Malone, W.M.C Foulkes and Michael Bonitz: Ab initio Quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit. Physical Review Letters DOI 10.1103/PhysRevLett.117.156403
    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.156403

    Eine Animation steht zur Verfügung:
    www.lanl.gov/projects/dense-plasma-theory
    Copyright: Travis Sjostrom
    Zu sehen ist die Elektronendichte in einer Quanten-Molekular-Dynamik-Simulation von warmer dichter Materie aus Deuterium, einem Isotop des Wasserstoffes, bei einer Dichte von 10g/cm³ und einer Temperatur von 100.000 Grad Celsius

    Kontakt:
    Prof. Michael Bonitz
    Institut für Theoretische Physik und Astrophysik,
    Universität Kiel
    Tel.: 0431-880-4122
    E-Mail: bonitz@theo-physik.uni-kiel.de
    Web: www.theo-physik.uni-kiel.de/~bonitz

    Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de


    More information:

    http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-324-bonitz


    Images

    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).