idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/07/2016 10:06

Major Urinary Proteins do not allow kin recognition in male mice

Mag.rer.nat Georg Mair Öffentlichkeitsarbeit und Kommunikation
Veterinärmedizinische Universität Wien

    Many studies have concluded that "major urinary proteins" or MUPs provide a unique individual signature or ‘barcode’ and thereby control individual and kin recognition. Researchers from Vetmeduni Vienna now found evidence that directly refutes this hypothesis. They discovered that the MUP genes of wild house mice show a surprising lack of variability, and rather than providing a stable barcode, individuals dynamically regulate the number of MUP excreted depending upon social context. These findings contradict the widely assumed hypothesis that MUPs control kin recognition. The results were published in Scientific Reports and Molecular Biosystems.

    The urine of house mice, unlike humans, contains large amounts of proteins, which are mainly major urinary proteins or MUPs. These proteins function to stabilize the release of volatile pheromones from urinary scent marks. MUP genes occur in a large cluster in mice, and there are 21 different MUP genes, whereas humans have only one MUP gene, which is no longer functional.
    Until now, researchers have assumed that MUP genes in wild populations of mice were highly variable, and that MUP proteins provide a unique individual signature or ‘barcode’ that mediates individual and kin recognition. Studies to confirm this critical assumption have nevertheless been lacking. Researchers from Vetmeduni Vienna now analysed the MUP genes in the respective cluster as well as the proteins. Their findings directly challenge the MUP barcode hypothesis.

    Barcode hypothesis so far lacked critical tests

    “We are interested in the genetic bases of chemical communication and kin recognition. We have been focusing on MUPs because they have are often claimed to provide the genetic basis of kin recognition and inbreeding avoidance, explains Dustin Penn from Konrad Lorenz Institute of Ethology at Vetmeduni Vienna.
    The barcode hypothesis presumes that MUP genes and proteins are highly variable in wild populations, and that individuals produce their own unique and stable combination of MUP proteins. Penn’s team and proteomic specialists at Vetmeduni Vienna now provide evidence that directly challenge this hypothesis for the first time.

    Kin recognition must be controlled by other mechanisms

    The team started by analysing the MUP gene cluster of wild house mice by direct DNA sequencing. Rather than finding highly variable sequences, they discovered that individuals show no variation at MUP genes whatsoever. Moreover, they found unusually low genetic variation through the entire MUP cluster. “We initially wondered how natural selection could maintain high levels of variation of MUP genes, but now we have to explain the remarkable lack of variation. Because of the high sequence similarity or homology of different MUP genes, we were sceptical that they could simultaneously show high variability among individuals”, says Penn.
    The team additionally discovered that conventional gel-based techniques do not separate different MUP proteins, which posed a difficult technical challenge for measuring the regulation of different proteins. Proteins had to be analysed with new, state-of-the-art mass spectroscopy instead. Using this gel-free method they found that individuals show almost no variation in the number of MUP proteins expressed.

    MUP expression depends upon social context

    The assumption that MUPs provide a stable individual barcode was also refuted by Penn and his collaborators. The new proteomic methods made it possible to identify the different MUPs expressed in individual urine samples over time. “Our results show that mice change the MUPs they produce depending upon a social context. The number of MUPs in the urine of male house mice is surprisingly dynamic. Future experiments are now needed to determine genetic basis for kin recognition and why males differentially regulate MUPs depending upon the social and reproductive contexts”, says Penn.

    Service:
    The article “Diversity of major urinary proteins (MUPs) in wild house mice“ by Michaela Thoß, Viktoria Enk, Hans Yu, Ingrid Miller, Kenneth C. Luzynski, Boglarka Balint, Steve Smith, Ebrahim Razzazi-Fazeli and Dustin J. Penn was published in Scientific Reports.
    http://www.nature.com/articles/srep38378

    The article “Regulation of highly homologous major urinary proteins in house mice quantified with label-free methods“ by Michaela Thoß, Christian Baumann, Kenneth C. Luzynski, Ebrahim Razzazi-Fazeli and Dustin J. Penn was published in Molecular Biosystems.
    http://pubs.rsc.org/en/content/articlelanding/2016/mb/c6mb00278a#!divAbstract

    About the University of Veterinary Medicine, Vienna
    The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

    Scientific Contact:
    Dustin Penn
    Konrad Lorenz Institute of Ethology
    University of Veterinary Medicine Vienna (Vetmeduni Vienna)
    T +43 1 25077-7323
    dustin.penn@vetmeduni.ac.at

    Released by:
    Georg Mair
    Science Communication / Corporate Communications
    University of Veterinary Medicine Vienna (Vetmeduni Vienna)
    T +43 1 25077-1165
    georg.mair@vetmeduni.ac.at


    More information:

    http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...


    Images

    Urinary Proteins do not allow kin recognition. They seem to be expressed depending upon social context.
    Urinary Proteins do not allow kin recognition. They seem to be expressed depending upon social conte ...
    Source: Kerstin Thonhauser/Vetmeduni Vienna


    Criteria of this press release:
    Journalists, all interested persons
    Biology, Chemistry, Environment / ecology, Social studies, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).