idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/28/2016 10:57

Magnetischer Kohlenstoff mit winzigen Mustern

Monika Landgraf Presse, Kommunikation und Marketing
Karlsruher Institut für Technologie

    Forschern am Karlsruher Institut für Technologie (KIT) ist es erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Gemeinsam mit Wissenschaftlern an der Universität Freiburg versahen sie Polymere per Lithographie mit winzig kleinen Strukturen und wandelten sie über Pyrolyse um. So erhielten sie pyrolytischen magnetischen Kohlenstoff (PMC). Dieser ist kostengünstig, lässt sich bei Raumtemperatur nutzen und eignet sich für Mikro und Nanoelektromechanische Systeme (MEMS und NEMS). Im Journal of Applied Physics stellen die Forscher PMC vor. (DOI: 10.1063/1.4972476)

    Reiner Kohlenstoff ist normalerweise nicht magnetisch. Daher kon-zentrierte sich die Nanotechnologie beim Einsatz von Kohlenstoff bisher auf dessen Fähigkeit zum Elektronentransport. Kohlenstoff mit magnetischen Eigenschaften wurde zwar bereits vereinzelt her-gestellt, jedoch ohne die Produktion auf die Mikro- und Nanoskala zu übertragen. Forschern um Professor Jan G. Korvink am Institut für Mikrostrukturtechnik (IMT) des KIT ist es zusammen mit Wissen-schaftlern um Professor Stefan Weber am Institut für Physikalische Chemie der Universität Freiburg nun erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Der von ihnen gefertigte pyrolytische magnetische Kohlenstoff (PMC) ist kostengünstig, bleibt anders als die meisten magnetischen Materialien auch bei extrem hohen Temperaturen stabil, erfordert keine speziellen Lagerungsbedingungen, lässt sich bei Raumtemperatur nutzen und ist mit den meisten skalierbaren lithographischen Tech-niken kompatibel.

    Wie die Forscher im Journal of Applied Physics berichten, verwen-deten sie als Ausgangsstoff Polymere, wie sie gemeinhin bei der Fertigung von Mikroelektromechanischen Systemen (MEMS) einge-setzt werden. MEMS sind winzige Bauteile, die elektrische und me-chanische Informationen verarbeiten, unter anderem in der Mess- und Sicherheitstechnik, Medizin- und Automobiltechnik. Die verwen-deten Polymere lassen sich durch verschiedene Verfahren mit Mikro- und Nanostrukturen versehen; die Karlsruher und Freiburger Wissenschaftler bedienten sich dazu der Photolithographie und der Zwei-Photonen-Lithographie. Bei Ersterer werden die in einer Maske gespeicherten Informationen durch fotografische Abbildung in eine strahlungsempfindliche Schicht übertragen. Bei Letzterer wird flüssi-ges Harz durch fokussierte Laserstrahlen ausgehärtet und werden so in hohem Tempo winzige dreidimensionale Strukturen geschaffen.

    Die Wissenschaftler unterzogen die strukturierten Polymere einer Pyrolyse, wobei die Temperatur bei nur etwa 600 Grad Celsius lag, was für eine ganze Reihe von MEMS-Materialien verträglich ist. So wandelten sie die Polymere in Kohlenstoff um. „Dieser pyrolytische magnetische Kohlenstoff, kurz PMC, unterscheidet sich grundlegend von glasartigem Kohlenstoff, der klassischen Form des pyrolytischen Kohlenstoffs. PMC besitzt intrinsische magnetische Eigenschaften, weil er während der Pyrolyse seine Mikrostruktur verändert und ungepaarte Elektronenspins aufgebaut hat“, erklärt Dr. Swati Sharma vom IMT des KIT, korrespondierende Autorin der Publikation. „Je mehr ungepaarte Elektronenspins vorliegen, desto stärker sind die magnetischen Eigenschaften.“

    Der nach dem dargestellten Verfahren hergestellte pyrolytische magnetische Kohlenstoff (PMC) ist dank seiner Stabilität und der günstigen Herstellungskosten für viele Anwendungen attraktiv, wie für die nächste Generation der Mikroelektromechanischen Systeme (MEMS) und die weiter miniaturisierten Nanoelektromechanischen Systeme (NEMS), für Magnetresonanzspektroskopie und weitere bildgebende Techniken sowie die Herstellung von magnetischen Kompositen. Darüber hinaus ist PMC interessant für die grundlegende Erforschung magnetischer Phänomene in Kohlenstoff.

    Die Herstellung von PMC ist das Ergebnis fachübergreifender Zu-sammenarbeit: Neben Dr. Swati Sharma, die sich schwerpunktmäßig mit kohlenstoffbasierten MEMS befasst, waren der Physiker Dr. Lorenzo Bordonali und der Chemiker Dr. Neil McKinnon aus der Gruppe von Professor Jan G. Korvink, Experte für Magnetresonanz-technologie, am KIT sowie der Materialwissenschaftler Arpad M. Rostas aus der Gruppe von Professor Stefan Weber an der Univer-sität Freiburg daran beteiligt. Finanziert wurde die Arbeit im Rahmen des EU-Projekts NMCEL unter der Leitung von Professor Jan G. Korvink.

    Swati Sharma, Arpad M. Rostas, Lorenzo Bordonali, Neil MacKinnon, Stefan Weber, and Jan G. Korvink: Micro and nano patternable magnetic carbon. Journal of Applied Physics, 2016. DOI: 10.1063/1.4972476

    Weiterer Kontakt:

    Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

    Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtun-gen Europas.

    KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

    Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.


    Images

    Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschaften verantwortlichen ungepaarten Elektronenspins (rot).
    Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschafte ...
    Source: Abbildung: Swati Sharma


    Attachment
    attachment icon Magnetischer Kohlenstoff mit winzigen Mustern

    Criteria of this press release:
    Journalists
    Chemistry, Electrical engineering, Information technology, Materials sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).