idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/07/2017 20:00

Genetic defects in tooth enamel conducive to development of caries

Nathalie Huber Kommunikation
Universität Zürich

    Bacteria are not the sole cause of caries; tooth resistance also plays an instrumental role. Researchers from the University of Zurich demonstrate that mutated genes lead to defects in the tooth enamel and can therefore encourage the development of caries.

    Why do some people develop caries even though they always brush their teeth carefully while others are less stringent regarding dental hygiene yet do not have any holes? Ultimately, both have bacteria on the surface of their teeth which can attack the enamel. Enamel forms via the mineralization of specific enamel proteins. If the outer layer of the teeth is defective, tooth decay can strike.

    Researchers from the University of Zurich have now pinpointed a gene complex for the first time that is responsible for the formation of tooth enamel. Two teams from the Centre of Dental Medicine and the Institute of Molecular Life Sciences used mice with varying mutations of the enamel proteins involved in the so-called Wnt signaling pathway. Thanks to this transmission route, human and animal cells respond to external signals and specifically activate selected genes in the cell nucleus. The signaling pathway is essential for embryonal development and also plays a pivotal role in the development of cancer or physical malformations.


    Mutations in proteins trigger defective tooth enamel

    “All mice with mutations in these proteins exhibit teeth with enamel defects,” explains Pierfrancesco Pagella, one of the study’s two first authors. “Therefore, we demonstrated that there is a direct link between mutations in the genetic blueprints for these proteins and the development of tooth enamel defects.” This genetic discovery goes a long way towards improving our understanding of the production of tooth enamel.


    The team of researchers was the first in the world to use modern genetic, molecular and biochemical methods to study tooth enamel defects in detail. “We discovered that three particular proteins involved in the Wnt signaling pathway aren’t just involved in the development of severe illnesses, but also in the qualitative refinement of highly developed tissue,” says co-first author Claudio Cantù from the molecular biologist research group lead by Prof. Konrad Basler. “If the signal transmission isn’t working properly, the structure of the tooth enamel can change.”


    Increased risk of caries with defective tooth enamel

    The hardness and composition of the tooth enamel can affect the progression of caries. “We revealed that tooth decay isn’t just linked to bacteria, but also the tooth’s resistance,” says Thimios Mitsiadis, Professor of Oral Biology at the Center of Dental Medicine. Bacteria and their toxic products can easily penetrate enamel with a less stable structure, which leads to carious lesions, even if oral hygiene is maintained.


    Understanding the molecular-biological connections of tooth enamel development and the impact of mutations that lead to enamel defects opens up new possibilities for the prevention of caries. “New products that hinder the progress of tooth caries in the event of defective tooth enamel will enable us to improve the dental health of patients considerably,” adds Mitsiadis.


    Literature:

    C. Cantù, P. Pagella, T. D. Shajiei, D. Zimmerli, T. Valenta, G. Hausmann, K. Basler and T. A. Mitsiadis. A cytoplasmic role of Wnt-β-catenin transcriptional cofactors in tooth enamel formation. Science Signaling. February 7, 2016. DOI: 10.1126/scisignal.aah4598



    Contact:

    Prof. Thimios Mitsiadis

    Centre of Dental Medicine
    Institute of Oral Biology
    University of Zurich
    Phone +41 44 634 33 90
    E-mail thimios.mitsiadis@zzm.uzh.ch


    More information:

    http://www.media.uzh.ch/en.html


    Images

    Criteria of this press release:
    Journalists
    Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).