idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/17/2017 10:52

Bahndrehimpuls von Plasmonen im Video

Beate Kostka M.A. Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Mit Licht große Datenmengen übertragen und sogar Materie bewegen, das sind Zukunftsvisionen von Physikern, die sich mit Plasmonik beschäftigen. Wissenschaftlern vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen ist es in Kooperation mit Kollegen aus Haifa (Israel), Kaiserslautern und Stuttgart gelungen, nanometerkleine Lichtstrudel auf einer Metalloberfläche zu erzeugen und sie im Takt von Attosekunden zu filmen.

    Was auf dem Bildschirm erscheint, sieht aus wie eine sich drehende Lakritzschnecke. Tatsächlich ist es die spiralförmige Bewegung einer durch Licht angeregten Elektronenwelle (Plasmon) auf einer Metalloberfläche, aufgenommen aus Einzelbildern mit einem Abstand von unvorstellbaren 100 Trillionsteln einer Sekunde.

    Dazu haben Forscher der Universität Stuttgart einkristalline Goldinselchen angefertigt und per fokussierter Ionenstrahl-Lithographie eine Windung einer Archimedischen Spirale – den Ursprung der Lakritzschnecke – in die Oberfläche geritzt. Beschießt man diese mit einem Femtosekunden-Laserpuls, so nehmen die entstehenden Plasmonen genau diese Form an und rotieren in der Zeit als Spirale auf der Goldoberfläche.

    Zu Abbildung bedienen sich die Wissenschaftler der zeitaufgelösten 2-Photon-Photoemissionsmikroskopie (2PPE), die nur eine Handvoll Arbeitsgruppen weltweit beherrschen: Forscher der Universität Kaiserslautern und der Universität Duisburg-Essen regen dazu mit einem ersten Femtosekundenpuls das Plasmon an.

    In variablem Abstand von wenigen Attosekunden bis Femtosekunden folgt anschließend ein zweiter Laserpuls, der konstruktive und destruktive Interferenz detektiert. Vergrößert man den zeitlichen Abstand zwischen anregendem (pump) und detektierendem Laserpuls (probe) bei jedem Ansatz um rund 100 Attosekunden, so ergibt sich aus der Summe der aneinandergefügten Bilder ein Film des rotierenden Plasmons.

    Es zeigte sich, dass bei jeder Anregung zwei Plasmonen unterschiedlicher Wellenlänge entstanden: Eines auf der sichtbaren Goldoberfläche und eines auf der unteren Grenzfläche zwischen Gold und Siliziumsubstrat. Die untere Spirale war dabei mit einer Wellenlänge von rund 180nm deutlich kleiner als ihr oberes Pendant (780 nm) und wurde vom Team um CENIDE-Physiker Prof. Dr. Frank-J. Meyer zu Heringdorf der Universität Duisburg-Essen untersucht: Ihre geringe Größe öffnet die Tür zu möglichen neuen Anwendungen in der Optik, in der es auf möglichst kleine Wellenlängen ankommt, um die Beugungsgrenze zu unterschreiten.

    Die sichere und schnelle Übertragung großer Datenmengen per Glasfaserkabel ist dabei eine Option. „Wir denken aber auch schon darüber nach, Materie zu bewegen“, so Meyer zu Heringdorf. „Dafür müsste ein Partikel im Zentrum der Spirale liegen und mit ihr interagieren.“ Dann könnte ein Lichtpuls ausreichen, um ein Nanopartikel zu drehen und eine Funktion in Gang zu setzen.

    Originalpublikation: Spektor et al., SCIENCE 355 (2017) S. 1187
    DOI: 10.1126/science.aaj1699

    Weitere Informationen: Prof. Dr. rer. nat. Frank Meyer zu Heringdorf, Fakultät für Physik, 0203 379-1465, meyerzh@uni-due.de

    Redaktion: Birte Vierjahn, 0203/ 379-8176, birte.vierjahn@uni-due.de


    More information:

    http://science.sciencemag.org/content/sci/suppl/2017/03/15/355.6330.1187.DC1/aaj...


    Images

    Lichtspirale auf Gold
    Lichtspirale auf Gold
    Uni Stuttgart
    None


    Criteria of this press release:
    Journalists, all interested persons
    Chemistry, Electrical engineering, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).