idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/03/2017 13:49

Slimy and smart - uncovered

Carolin Hoffrogge Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Researchers from Göttingen and the US discover fundamentals of complex behavior of slime molds

    A team including Dr. Karen Alim, head of the Max Planck Research Group on Biological Physics and Morphogenesis at the Göttingen Max Planck Institute for Dynamics und Self-Organization, and her colleagues from Harvard und Madison have discovered the mechanism underlying the slime mold’s (Physarum polycephalum) complex behavior, work just published in the recent issue of Proceedings of the National Academy (PNAS). Their discovery: Despite lacking a nervous system, a simple feedback allows the network-forming slime mold to find the shortest path through a maze. The slime mold sends information in the form of signaling molecules throughout its network of veins. Signaling molecules are transported by flowing fluids and cause fluid flow to increase. This positive feedback loop, on the one hand, speeds up information transfer, but at the same time fosters the growth of veins, precisely those that are tracing the shortest path between stimuli. With their project the scientists illuminate the mystery behind the ‘intelligent’ slime mold. They hope that the feedback mechanism found in nature may in future help develop artificial systems permitting self-organizing adaptation.

    Without a brain, but smart

    Complex behavior is typically associated with animals. But also, apparently simple organisms like slime molds and fungi can process information and coordinate organism-wide decisions. The slime mold Physarum polycephalum uses its network-forming body to solve complex problems, for example finding the shortest route between food sources. This is even though the organism lacks any neural circuitry and is growing as a single cell.
    Within the slime mold liquid cytoplasm is shuttled back and forth through its network of veins. Cross-sectional contractions of veins drive the rhythmic, peristaltic flows. To identify how information is sent around this network the scientists first tracked the slime mold’s response to a localized nutrient stimulus and observed an increase in contractions that spreads out throughout the network. The increase in contractions propagates with a velocity comparable to the flow-driven dispersion of particles. The team built a mathematical model based on these observations and identified the mechanism of information transfer in the slime mold: The nutrient stimulus triggers the release of signaling molecules. The molecules are spread by the fluid flow but simultaneously control flow generation by causing local increases in contraction which move with the flow. The molecule is initiating a feedback loop to promote its own movement. This very simple mechanism explains previously puzzling phenomena, including the adaptation of the peristaltic flows to organism size and the slime mold’s ability to find the shortest route between food sources.
    “The mechanism of communication is based on: a signaling molecule, fluid flows, and an interaction between the signal and fluid flows”, says Karen Alim first author on this study. “The mechanism is likely to be a general one and may serve as a broad explanation for the complex behaviors of many organisms without nervous systems. For us as scientists it is fascinating to transfer this mechanism of communication to technological applications to implement self-organized adaptation.”


    More information:

    http://www.pnas.org/content/early/2017/05/01/1618114114.abstract


    Images

    A small drop of liquid nutrient stimulant on the network of a slime mold, Physarum polycephalum
    A small drop of liquid nutrient stimulant on the network of a slime mold, Physarum polycephalum
    Source: © Natalie Andrew


    Criteria of this press release:
    Journalists
    Biology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).