idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/23/2017 10:57

Equipping form with function

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    Thanks to software developed at IST Austria, even novice users will be able to easily adjust a 3D-printable mechanism to fit a new shape. The Algorithm will be presented at the prestigious “SIGGRAPH” conference this summer.

    Common toys such as steerable cars or waving wind-up figures are available as 3D-printable models, which also contain their mechanical components. However, these mechanical structures are optimized to fit exactly one particular shape of the toy. If designers want to reuse such a mechanism with different shapes, the necessary manual adjustments to the individual components are often unmanageable for non-experts, in addition to being extremely tedious. Scientists at the Institute of Science and Technology Austria (IST Austria) in collaboration with colleagues from Adobe Research have now solved this problem by developing an interactive design tool that allows users to easily adjust a mechanical template to the shape of their choice. The software tool, which will be made available in the future, will be presented at this year’s prestigious “SIGGRAPH” conference by first author and PhD student Ran Zhang from the research group of Bernd Bickel.

    “Given a car model, there is usually one kind of mechanism that provides the functionality and, at the same time, thousands of different shapes that the car can have,” explains co-author Thomas Auzinger. “Our code bridges this gap and makes it possible to reuse the mechanism across all shapes. It allows for flexibility,” he adds.

    People and computers have very different abilities and competences. While humans have an eye for the aesthetics, it is the computer that is best suited at enforcing mathematical constraints and at optimizing the functionality of the generally large number of connected mechanical components, such as axles, gears, wheels, etc. This is why the user and the code interactively work together in an approach that the researchers took for the first time. “Our tool always guarantees functionality, while artists can adjust the mechanical template to fit the design of their choice,” explains lead author Ran Zhang.

    Three Austrian artists have tested the program already. The professional 3D-modellers came to visit IST Austria in Klosterneuburg, imported the mechanical template of their choice and adjusted it to fit self-designed 3D-shapes without having to worry about mechanical constraints. Normally, extensive manual adjustments to each of the individual components of the mechanical structure would have been necessary — a task that is tedious if not downright impossible for non-experts. With the newly developed tool, in contrast, adjustment is easy and happens in real time. “Even novice users will be able to create a functional model from the shape of their choice,” says Ran Zhang.

    The viability of the novel tool was shown for different mechanical templates: for waving wind-up toys, periodic motions of hand models, steerable and motorized RC cars, and for vehicles with moveable rotors such as helicopters and planes. Each of them can be adjusted to produce a wide variety of differently-shaped figurines and vehicles. “While our result is already quite applicable, I want to point out that it is still an explorative research project,” says Thomas Auzinger. “We took an entirely new modeling approach based on mathematical optimization and showed its viability. It was a proof of concept.”

    Professor Bernd Bickel, who previously worked at Disney Research in Zürich and at the Technical University of Berlin, joined IST Austria in 2015. He leads a research group on computer graphics and digital fabrication. Ran Zhang, first author of the study, graduated from the University of Science and Technology of China and is a PhD student in his group. Co-author Thomas Auzinger, who obtained his PhD from the TU Wien, is a postdoc at IST Austria. Co-author Duygu Ceylan who obtained her PhD from EPFL, Switzerland is now a research scientist at Adobe Research. Co-author Wilmot Li, who obtained his PhD from the University of Washington is a principal scientist at Adobe Research.


    More information:


    http://visualcomputing.ist.ac.at/publications/2017/MechRet/ Find out more about the project here


    Images

    The mechanisms for a waving wind-up toy is adjusted to fit the shape of a turtle
    The mechanisms for a waving wind-up toy is adjusted to fit the shape of a turtle
    Source: IST Austria

    Various results of the algorithm. The middle and bottom row show objects that have been fabricated by the researchers using 3D printing.
    Various results of the algorithm. The middle and bottom row show objects that have been fabricated b ...
    Source: IST Austria


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Information technology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).