idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/25/2017 11:37

Noisy cell membranes

Dr. Peter Saueressig Presse- und Öffentlichkeitsarbeit
Heidelberger Institut für Theoretische Studien gGmbH

    Rapid information transfer is vital for the inner workings of body tissues. With computer simulations, researchers from Colombia and Germany found that mechanical pulses travel through membranes for biologically relevant distances at the speed of sound. The researchers think that membranes could serve as a tin can telephone for the cell.

    Biological membranes are essential for any form of life. They are the wrapping for the precious molecules of life inside the cell. Membranes also contain many important molecules themselves, such as lipids arranging as a bilayer and proteins embedding into such bilayer, which allows tightly controlled information exchange with the outside. Cells and thus their membranes are constantly pushed and pulled by their neighboring cells, while cells divide, communicate, move, or die.

    Researchers have long been wondering whether such poking mechanical forces could propagate along the membrane just like sound waves. In a recent study, Camilo Aponte-Santamaría from the University of los Andes in Bogotá, Colombia, and Jan Brunken and Frauke Gräter from the Molecular Biomechanics group at the Heidelberg Institute for Theoretical Studies (HITS), Germany, used computer simulations to demonstrate that mechanical pulses propagate through membranes at very high speeds of kilometer per second comparable to the speed of sound.

    Chasing these fast, noisy and tiny pulses in the computer has been a particular challenge for researchers so far. Aponte-Santamaría, Brunken, and Gräter therefore developed tailor-made Force Distribution Analysis. This analysis allowed to find out that a pulse can travel for tens of nanometers so that it reaches many biomolecules embedded in the membrane within as little as one millionth of one millionth of a second, before attenuation.

    Rapid information transfer across cells is vital for the inner workings of our tissues, from brain to muscle. The researchers think that the traveling of pulses through membranes could be a kind of tin can telephone for the cell. The actual nature and role of such ultrafast information transfer, however, remains to be tested in future experimental studies.

    Publication: Camilo Aponte-Santamaría, Jan Brunken, and Frauke Gräter. Stress propagation through biological lipid bilayers in silico. JACS communication. DOI: 10.1021/jacs.7b04724. (2017).

    Scientific Contact:

    Dr. Camilo Aponte-Santamaría
    Group Leader
    Max Planck Tandem Group in Computational Biophysics
    Universidad de los Andes
    Bogotá, Colombia
    E-mail: ca.aponte@uniandes.edu.co

    Prof. Dr. Frauke Gräter
    Group Leader „Molecular Biomechanics“
    Heidelberg Institute for Theoretical Studies
    Schloß-Wolfsbrunnenweg 35
    69118 Heidelberg, Germany
    E-mail: frauke.graeter@h-its.org

    Press Contact:
    Dr. Peter Saueressig
    Head of Communications
    Heidelberg Institute for Theoretical Studies (HITS)
    Phone: +49 6221 533 245
    peter.saueressig@h-its.org

    About HITS

    The Heidelberg Institute for Theoretical Studies (HITS) was established in 2010 by the physicist and SAP co-founder Klaus Tschira (1940-2015) and the Klaus Tschira Foundation as a private, non-profit research institute. HITS conducts basic research in the natural sciences, mathematics and computer science, with a focus on the processing, structuring, and analyzing of large amounts of complex data and the development of computational methods and software. The research fields range from molecular biology to astrophysics. The shareholders of HITS are the HITS Stiftung, which is a subsidiary of the Klaus Tschira Foundation, Heidelberg University and the Karlsruhe Institute of Technology (KIT). HITS also cooperates with other universities and research institutes and with industrial partners. The base funding of HITS is provided by the HITS Stiftung with funds received from the Klaus Tschira Foundation. The primary external funding agencies are the Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG), and the European Union.


    Images

    Could membranes be a kind of tin can telephone for the cell?
    Could membranes be a kind of tin can telephone for the cell?
    Source: Dimj/Shutterstock.com


    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).