idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/18/2017 09:15

Fehlerfrei ins Quantencomputer-Zeitalter

Dr. Christian Flatz Büro für Öffentlichkeitarbeit und Kulturservice
Universität Innsbruck

    Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

    Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr Quantenbits verfügen, und zweitens mit Fehlern umgehen können. „Aufwändige Rechnungen scheitern heute noch daran, dass die Systeme aufgrund von Störungen aus dem Ruder laufen“, sagt Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck und dem Akademieinstitut für Quantenoptik und Quanteninformation (IQOQI). „Durch Fehlerkorrektur lässt sich dieser Prozess eindämmen.“ Jeder herkömmliche Computer nutzt solche Verfahren, um Fehler bei der Speicherung und Übertragung von Daten zu erkennen und möglichst zu korrigieren. Dazu wird vor der Datenspeicherung oder Übertragung den Daten Redundanz hinzugefügt, meist in Form zusätzlicher Bits, die zum Erkennen und Korrigieren von Fehlern genutzt wird. Auch für den Quantencomputer wurden ähnliche Verfahren entwickelt, die im Wesentlichen darin bestehen, die Quanteninformation in mehreren, miteinander verschränkten physikalischen Quantenbits zu speichern. „Hier werden die Eigenschaften der Quantenwelt genutzt, um Fehler zu erkennen und zu korrigieren“, beschreibt Markus Müller von der Swansea University in Großbritannien. „Wenn es gelingt, die Störungen unter eine bestimmte Schwelle zu drücken, können wir Quantencomputer für beliebig komplexe Rechnungen bauen, indem wir die Zahl der verschränkten Quantenbits entsprechend erhöhen.“

    Ionen im Labyrinth gefangen

    Gemeinsam mit seinem Kollegen Alejandro Bermudez Carballo betont Markus Müller, dass auf dem Weg zu diesem Ziel die Möglichkeiten der technologischen Plattformen bestmöglich ausgenutzt werden müssen. „Für die Fehlerkorrektur benötigen wir Quantenschaltkreise, die besonders stabil sind und auch unter realistischen Bedingungen verlässlich arbeiten, sogar wenn während der Fehlerkorrektur selbst zusätzliche Fehler auftreten“, erklärt Bermudez. Sie gemeinsam haben eine Reihe von fehlertoleranten Protokollen weiterentwickelt und untersucht, wie diese mit den heute verfügbaren Operationen auf Quantencomputern umgesetzt werden können. Eine neue Generation von segmentierten Ionenfallen bietet dafür ideale Möglichkeiten: Einzelne Ionen können rasch zwischen verschiedenen Zonen einer Falle hin- und hertransportiert werden. Zeitlich sorgfältig festgelegte Abläufe erlauben parallele Prozesse in unterschiedlichen Speicher- und Rechenzonen. Durch den Einsatz von zwei unterschiedlichen Ionenarten in einer Falle lässt sich die eine Art als Träger der logischen Quantenbits einsetzen, während die andere zur Fehlermessung, Rauschunterdrückung und Kühlung dient.

    Neue Generation von Quantencomputern

    Auf Basis der experimentellen Erfahrung von Forschungsgruppen in Innsbruck, Mainz, Zürich und Sydney haben die Forscher Kriterien definiert, anhand deren bestimmt werden kann, ob die Quantenfehlerkorrektur erfolgreich ist. Auf dieser Basis können die Wissenschaftler die weitere Entwicklung von Ionenfallen-Quantencomputern leiten, um schon in naher Zukunft ein logisches Quantenbit zu realisieren, das mit Hilfe der Fehlerkorrektur die Eigenschaften eines rein physikalischen Quantenbits übersteigt.
    Aufwändige numerische Simulationen der neuen Fehlerkorrekturprotokolle in der Arbeitsgruppe um Simon Benjamin an der Universität Oxford zeigen, wie die Hardware der nächsten Generation von Ionenfallen-Quantencomputern weiterentwickelt werden muss, um in Zukunft fehlertolerant rechnen zu können. „Unsere numerischen Ergebnisse unterstreichen, dass die modernsten Ionenfallen-Technologien als Basis für den Bau von großen, fehlertoleranten Quantencomputern sehr gut geeignet sind“, erklärt Benjamin.

    Die Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und der Tiroler Industrie finanziell unterstützt.

    Publikation: Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation. A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and M. Müller. Phys. Rev. X 7, 041061 DOI: 10.1103/PhysRevX.7.041061

    Rückfragehinweis:
    Rainer Blatt
    Institut für Experimentalphysik
    Universität Innsbruck
    Telefon: +43 512 507 52450
    E-Mail: Rainer.Blatt@uibk.ac.at

    Markus Müller
    Department of Physics
    Swansea University
    Telefon: +44 1792 604925
    E-Mail: Markus.Muller@swansea.ac.uk

    Christian Flatz
    Büro für Öffentlichkeitsarbeit
    Universität Innsbruck
    Telefon: +43 512 507 32022
    Mobil: +43 676 872532022
    E-Mail: christian.flatz@uibk.ac.at


    More information:

    http://quantumoptics.at - Quantum Optics and Spectroscopy Group
    http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik
    http://iqoqi.at - Institut für Quantenoptik und Quanteninformation
    http://markus-mueller.website/ - Website Markus Müller


    Images

    Ein mehrstufiger Korrekturprozess sorgt im Quantencomputer für fehlerfreies Rechnen.
    Ein mehrstufiger Korrekturprozess sorgt im Quantencomputer für fehlerfreies Rechnen.
    Source: IQOQI Innsbruck/Harald Ritsch


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).