idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/25/2018 16:11

Energy supply channels

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Freiburg scientists elucidate the mechanism for inserting protein molecules into the outer compartment of mitochondria

    Researchers at the University of Freiburg have succeeded in describing how so-called beta-barrel proteins are inserted into the membrane of mitochondria. The proteins enable the cells’ powerhouses to import and export molecules. With this discovery, the team led by Prof. Dr. Nils Wiedemann and Prof. Dr. Nikolaus Pfanner in cooperation with the group of Prof. Dr. Carola Hunte has been able to clarify a fundamental question of protein biochemistry. The European Research Council (ERC) funded the research with a Consolidator Grant. The scientists have published their findings in the journal Science.

    Mitochondria, also known as the cells’ powerhouses, contain roughly 1,000 protein molecules that are transported from the cytosol. For this purpose, its outer membrane has protein import channels consisting of molecules with a barrel structure, so-called beta-barrel proteins. In the mitochondria, energy from nutrients is used to produce the cellular energy molecule adenosine triphosphate (ATP). ATP is transported through further barrel pores across the mitochondrial outer membrane into the cytosol, which fuels life of human cells.

    About thirty years ago, the group led by Prof. Dr. Georg Schulz at the University of Freiburg elucidated the structure of the beta-barrel membrane proteins: Strands of proteins extending in opposite directions create sheets that form a hollow cylinder by association of the first and last strand. Ever since then, the question has arisen how this class of channel-forming protein molecules is inserted into biological membranes. Subsequently, the sorting and assembling machinery (SAM) was identified in the mitochondrial outer membrane, which is required for the insertion of the barrel proteins. Sam50 is the name of the central subunit of SAM for the formation of beta-barrel proteins. This is the starting point for the current research: Dr. Alexandra Höhr proved experimentally that the last strand of the new protein is introduced between the first and the last strand of the Sam50 beta-barrel with which the membrane insertion begins. Together with Caroline Lindau, she showed that new strands of the new beta-barrel are threaded piece by piece into the lateral opening of Sam50 until the new complete channel is released into the membrane.

    Because mitochondria and the photosynthetic chloroplasts are derived from joint bacterial ancestors, the study not only contributes to a better understanding of the formation and function of the cells’ powerhouses, but also provides new insights into the formation of chloroplasts and bacteria.

    Nils Wiedemann, Nikolaus Pfanner and Carola Hunte are group leaders at the Institute of Biochemistry and Molecular Biology and members of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Spemann Graduate School for Biology and Medicine at the University of Freiburg.

    Original publication:
    Alexandra I. C. Höhr, Caroline Lindau, Christophe Wirth, Jian Qiu, David A. Stroud, Stephan Kutik, Bernard Guiard, Carola Hunte, Thomas Becker, Nikolaus Pfanner, Nils Wiedemann: Membrane protein insertion through a mitochondrial β-barrel gate. In: Science 359/6373.
    http://science.sciencemag.org/content/359/6373/eaah6834.full

    Contact:
    Nils Wiedemann
    Institute for Biochemistry and Molecular Biology
    University of Freiburg
    Tel.: 0761/203-5280
    E-Mail: nils.wiedemann@biochemie.uni-freiburg.de


    More information:

    https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/energy-supply-channels?...


    Images

    Model of the beta-barrel protein porin from baker's yeast  Illustration: Christophe Wirth
    Model of the beta-barrel protein porin from baker's yeast Illustration: Christophe Wirth


    Criteria of this press release:
    Journalists
    Biology, Chemistry, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).