idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/25/2018 14:27

How to Weigh Stars With Gravitational Lensing

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Using data from Gaia astrometry satellite, astronomers at Heidelberg University investigated the movement of millions of stars in the Milky Way galaxy. For the first time, they were able to predict the approach of two stars with extreme precision and to forecast characteristic effects of relativistic light deflection that can be used to precisely measure the mass of stars. The findings were published in the journal “Astronomy & Astrophysics Letters”.

    Press Release
    Heidelberg, 25 July 2018

    How to Weigh Stars With Gravitational Lensing
    Heidelberg astronomers predict star approaches with extreme precision for the first time

    Using data from Gaia astrometry satellite, astronomers at Heidelberg University investigated the movement of millions of stars in the Milky Way galaxy. For the first time, they were able to predict the approach of two stars with extreme precision and to forecast characteristic effects of relativistic light deflection that can be used to precisely measure the mass of stars. The findings were published in the journal “Astronomy & Astrophysics Letters”.

    “The stars in the Milky Way don’t stand still, but move relative to one another like gnats in a swarm. As seen from Earth, a foreground star occasionally passes close to a background star. Light travelling towards us from the background star is shifted ever so slightly by the gravitational field of the foreground star as it passes,” explains Prof. Dr Joachim Wambsganß, Director at the Institute of Astronomical Computing at Heidelberg University's Centre for Astronomy (ZAH). This “astrometrical gravitational lensing” changes the position of the background star in the heavens by a very small but still measurable amount. This shift plus the relative position of the two approaching stars can be used to derive the mass of the foreground star.

    “This method of measuring mass is precise to within a few percentage points. Until now, however, it has been very difficult to predict when and which star pairs would pass close enough to one another to support such measurements, because the stars' precise ‘proper’ motion in the sky must be known,” emphasises Prof. Wambsganß. The Gaia astrometry satellite has been measuring the position and the proper motion of approximately 1.5 billion stars for about four years, and its recently released data are of sufficient precision. The extensive dataset was published in April of this year.

    Jonas Klüter, a doctoral student working with Prof. Wambsganß, combed through this vast data volume for the best star-crossings observable within the next 50 years, the period that can support reliable predictions using Gaia. The exhaustive analysis identified nearly 70.000 candidates, although not all are expected to produce a measurable shift. The researchers were able to predict a currently measurable effect for two stars currently located near a background star.

    They are known as Luyten 143-23 and Ross 322 in the star catalogue and move across the celestial sphere at a speed of 1,600 and 1,400 milliarcseconds (mas), respectively. According to Jonas Klüter, one of the stars passed closest to the background star in early July this year; the other will do so in early August. Gravitational lensing shifts the position of the background stars by 1.7 and 0.8 mas, respectively.

    Only the best telescopes can measure this change from Earth. Jonas Klüter is therefore conducting an observational campaign using, among others, the telescopes of the European Southern Observatory (ESO) in Chile. Aided by the telescopes, he will track the approaching star pairs and measure the positional shift to identify for the first time the mass of two stars by means of gravitational lensing.

    Contact:
    Communications and Marketing
    Press Office
    Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Dr Guido Thimm
    Centre for Astronomy of Heidelberg University (ZAH)
    Phone +49 6221 54-1842
    thimm@ari.uni-heidelberg.de


    Original publication:

    J. Klüter, U. Bastian, M. Demleitner, J. Wambsganss: Ongoing astrometric microlensing events of two nearby stars, Astronomy & Astrophysics Letters, https://doi.org/10.1051/0004-6361/201833461


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).