idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/28/2018 12:33

How oxygen can enhance strength and ductility of high-entropy alloys

Yasmin Ahmed Salem M.A. Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Eisenforschung GmbH

    Latest findings published in Nature

    Researchers from the Max-Planck-Institut für Eisenforschung, Düsseldorf, and the University of Science and Technology Beijing discovered a new mechanism that enhances both the antagonistic strength and ductility in a high-entropy alloy. The new mechanism is caused by the addition of oxygen in relatively high quantity, which alters the alloy’s microstructure and leads to an increase of strength by almost 50% and ductility of ca. 95%. The scientists published their latest findings in Nature.

    Oxygen, which is usually neglected as an alloying element as it is known to cause embrittlement, is now added by 2.0 atomic percent in a model high entropy alloy (HEA) of TiZrHfNb. The researchers studied the effect of oxygen on the microstructure of the HEA to understand the impact on strength and ductility. They used different analysis techniques such as synchrotron high-energy X-ray diffraction, electron backscatter diffraction mapping and aberration corrected scanning transmission electron microscopy (STEM) high-angle annular dark field but could not find differences between the oxygen loaded HEA and a usual one. Only STEM bright field and atom probe tomography revealed the main reason for the spectacular increase in strength: the oxygen is located at interstitial positions within agglomerations of lighter atom , i.e. Ti and Zr. “We could reveal that the oxygen locates within zones containing only a handful of atoms that are enriched in Ti, and, to a lesser extent Zr. Within these zones, the oxygen is arranged in a highly ordered manner forming individual trapping barriers. At the same time the ductility is increased during deformation when these ordered complexes are cut by dislocations, which are the crystalline defect that carry the plasticity, and cause their multiplication and change the way they shear the crystalline lattice.”, explains Dr. Baptiste Gault, head of the “Atom Probe Tomography” group at the MPIE. The oxygen complexes act as small precipitates and cause a change from planar to wavy slip during deformation.

    The presented alloy is a model system, exhibiting too little oxidation resistance. Research to improve their performance by adding Al, Si or Cr is ongoing. The interstitial complex strengthening mechanism could be forming in many other alloy classes beyond HEAs. The scientists are exploring other metallic systems in which the strengthening effects from these ordered complexes could be exploited, in particular alloys that are closer to engineering applications. The work was funded by the Natural Science Foundation of China.


    Contact for scientific information:

    Dr. Baptiste Gault, gault@mpie.de


    Original publication:

    Z. Lei, X. Liu, Yua. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. Nieh, Z. Lu
    Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
    Nature 563 (2018)
    https://doi.org/10.1038/s41586-018-0685-y


    More information:

    https://www.mpie.de/3865505/nature-oxygen-hea


    Images

    Atom probe tomography reveals a large distribution of ordered oxygen complexes in the model high-entropy alloy investigated.
    Atom probe tomography reveals a large distribution of ordered oxygen complexes in the model high-ent ...
    Source: B. Gault, Max-Planck-Institut für Eisenforschung GmbH


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Materials sciences, Mechanical engineering, Physics / astronomy
    transregional, national
    Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).