idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/29/2019 18:01

Fraunhofer-Forschungszentrum Maschinelles Lernen gewinnt Syngenta Crop Challenge

Elena Zay Presse und Öffentlichkeitsarbeit
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

    Der Klimawandel und die stetig wachsende Bevölkerung stellen die Agrarindustrie vor eine zentrale Frage: Wie werden wir in der Lage sein, genügend Nahrung anzubauen, um die global wachsende Nachfrage zu decken? Anhand von Umwelt- und Wachstumsdaten sowie profundem Expertenwissen haben das »Fraunhofer-Forschungszentrum Maschinelles Lernen« und das »Exzellenzcluster Phenorob« der Universität Bonn jetzt eine Künstliche Intelligenz entwickelt, die Umweltbedingungen in der Landwirtschaft und deren Auswirkung auf das Pflanzenwachstum ermittelt. Mit ihrer Technologie haben die Wissenschaftlerinnen und Wissenschaftler bei der »Syngenta Crop Challenge« in diesem Jahr den ersten Platz belegt.

    Besseres Saatgut, weniger Düngemittel, hohe Anpassungsfähigkeit – die intelligente Datenanalyse kann die Landwirtschaft nachhaltig und gewinnbringend unterstützen. Auf der Suche nach den besten Technologien lobt der globale Agrarkonzern Syngenta einmal jährlich die »Crop Challenge in Analytics« aus. Beim Finale in Austin, Texas, überzeugte die Technologie auf Basis des »Informed Machine Learnings« die Jury: Den ersten Platz belegten die Wissenschaftler Dr. Bogdan Georgiev, Kostadin Cvejoski, Cesar Ojeda und Dr. Jannis Schücker vom Fraunhofer-Forschungszentrum Maschinelles Lernen, unter Leitung des Fraunhofer-Instituts für Intelligente Analyse- und Informationssysteme IAIS, und die Agrarwissenschaftlerin Prof. Dr. Anne-Katrin Mahlein, Forschungsleiterin im Exzellenzcluster Phenorob der Universität Bonn, an dem auch das Fraunhofer IAIS beteiligt ist.

    Unter dem Titel »Combining expert knowledge and neural networks to model environmental stresses in agriculture« untersuchte das Siegerteam die Zusammenhänge zwischen Umweltbedingungen, wie Trockenheit und Hitze, und dem Wachstum von Pflanzen. Neben Umwelt- und Wachstumsdaten ließen die Fraunhofer-Wissenschaftler auch das Expertinnenwissen von Prof. Dr. Mahlein mit in die Entwicklung der Technologie einfließen. »Beim Informed Machine Learning geht es nicht darum, das Wissen der Fachleute durch Künstliche Intelligenz zu ersetzen«, erläutert KI-Experte Dr. Schücker. »Vielmehr wollen wir dieses Wissen mit modernen Methoden des Maschinellen Lernens kombinieren. So entsteht ein neuartiges Verfahren, welches bisher unbekannte Zusammenhänge aufdeckt.«

    Im Fraunhofer-Forschungszentrum Maschinelles Lernen forschen Wissenschaftlerinnen und Wissenschaftler mit dem Ziel, eine neue Generation verlässlicher ML-Verfahren zu entwickeln. Das Zentrum ist Teil des Fraunhofer-Clusters of Excellence Cognitive Internet Technologies (CCIT) unter der Leitung von Prof. Dr. Stefan Wrobel und Prof. Dr. Christian Bauckhage. Neben dem Forschungszentrum war mit Prof. Dr. Mahlein das Exzellenzcluster Phenorob an der ausgezeichneten Technologie beteiligt: Die Universität Bonn erforscht und entwickelt in Kooperation mit Fraunhofer IAIS eine ausgefeilte Technik zum Aufnehmen und zur Analyse von Daten aus der Landwirtschaft.

    »Der Erfolg bei der Challenge ist echte Teamarbeit und auf die Zusammenarbeit von KI-Expertinnen und -Experten auf der einen Seite und Branchenprofis auf der anderen Seite zurückzuführen«, sagt Dr. Schücker. »Daran sehen wir, welche gewinnbringenden Synergien im Rahmen von Exzellenzclustern wie den Zentren des CCIT und Phenorob und deren Verknüpfung untereinander entstehen können. Spitzenkompetenzen werden gebündelt und gestärkt.«


    More information:

    http://www.cit.fraunhofer.de/de/zentren/maschinelles-lernen Fraunhofer-Forschungszentrum Maschinelles Lernen
    http://www.iais.fraunhofer.de Fraunhofer IAIS
    http://www.phenorob.de/ Phenorob
    http://www.ideaconnection.com/syngenta-crop-challenge/ Syngenta Crop Challenge


    Images

    v.l.n.r. Juror Dr. Nicolas Martin, Fraunhofer IAIS-Wissenschaftler Kostadin Cvejoski und Dr. Bogdan Georgiev und Juror Greg Doonan
    v.l.n.r. Juror Dr. Nicolas Martin, Fraunhofer IAIS-Wissenschaftler Kostadin Cvejoski und Dr. Bogdan ...
    © Justin Elledge / Max Photography
    None


    Attachment
    attachment icon Presseinformation Fraunhofer-Forschungszentrum Maschinelles Lernen gewinnt Syngenta Crop Challenge

    Criteria of this press release:
    Journalists
    Environment / ecology, Information technology, Zoology / agricultural and forest sciences
    transregional, national
    Contests / awards, Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).