idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/08/2019 20:00

Zahlensinn ergibt sich spontan aus der Erkennung sichtbarer Objekte

Dr. Karl Guido Rijkhoek Hochschulkommunikation
Eberhard Karls Universität Tübingen

    Wissenschaftler der Universität Tübingen nutzen künstliche neuronale Netze als Hirnmodell des Sehsystems

    Menschen und Tiere haben einen „Zahlensinn“, eine angeborene Fähigkeit, die Anzahl sichtbarer Objekte in ihrem Blickfeld intuitiv zu erfassen. Als neuronale Grundlage dieser Fähigkeit gelten sogenannte Zahlenneurone, die bevorzugt auf bestimmte Anzahlen antworten und im Gehirn von Mensch und Tier nachgewiesen wurden. Ob und wie sich solche Zahlenneurone allein durch die Sehfähigkeit im Gehirn herausbilden können, war bislang unbekannt. Wie der Zahlensinn entsteht, hat ein Forscherteam unter der Leitung von Professor Andreas Nieder vom Institut für Neurobiologie der Universität Tübingen anhand eines künstlichen neuronalen Netzes untersucht. Den Ergebnissen zufolge geht er spontan und ohne Zählübung aus dem Sehsystem hervor. Die Studie wird in der Fachzeitschrift Science Advances veröffentlicht.

    Die Forscher trainierten zunächst ein künstliches neuronales Netz, ein sogenanntes ‚deep learning’-Netzwerk, Objekte wie Tennisbälle, Halsschmuck, Spinnen oder Hunde auf Fotos zu erkennen. „Das Netzwerkmodell beruhte auf einem System, das in seiner Architektur dem frühen Entwicklungszustand der menschlichen Sehhirnrinde nachempfunden ist“, erklärt Andreas Nieder. „Dort hatte man entdeckt, wie Nervenzellen in verschiedenen Hierarchieebenen beim Sehen zusammenarbeiten.“ Das künstliche Netz trainierte die Objekterkennung anhand von 1,2 Millionen Bildern, die in tausend Kategorien klassifiziert wurden. Nach dem Training konnte das Netzwerk Tausende von neuen Bildern mit hoher Trefferquote richtig klassifizieren.

    Rückgriff auf bestehende neuronale Netzwerke

    Gegliedert ist das Netzwerk in zwei Teile: Der eine extrahiert aus den Bildern die Merkmale des gezeigten Objekts und verwandelt diese in eine abstrakte Repräsentation; der zweite Teil ordnet die Objekte anhand der Repräsentation mit einer bestimmten Wahrscheinlichkeit einer Kategorie zu. „Die beiden Netzwerkteile haben wir voneinander getrennt und präsentierten nun dem ersten Teil statt Fotos von Objekten einfache Punktmuster mit ein bis 30 Punkten“, sagt Nieder. In folgenden Durchläufen wurden die Muster mit unterschiedlicher Punktform und -dichte in Variationen wieder-holt. Die Forscher analysierten nun, ob die künstlichen Neurone des Netzwerks unabhängig von sonstigen Merkmalen auf die jeweils gleiche Anzahl der dargestellten Punkte reagierten. „Fast zehn Prozent der künstlichen Neurone hatten sich auf jeweils eine bestimmte Anzahl spezialisiert, obwohl das Netzwerk nie auf die Unterscheidung von Anzahlen trainiert wurde. Das Netzwerk hatte sozu-sagen spontan einen Zahlensinn entwickelt“, beschreibt der Wissenschaftler das Ergebnis.

    Wissenschaftler hätten bereits zuvor vermutet, dass sich die Zählfähigkeit aus dem Sehsystem entwickelt. Grundsätzlich sei das Sehsystem mit der Erkennung sichtbarer Objekte beschäftigt. Die neue Studie zeige nun auf, wie sich aus einem künstlichen Sehsystem, das nur auf die Erkennung sichtbarer Objekte trainiert war, spontan Neurone des Zahlensinns entwickeln können. Diese ähnelten zudem in ihrem Funktionsverhalten echten Zahlenneuronen bei Tier und Mensch. „Der Zahlensinn scheint also nicht von einem bestimmten spezialisierten Hirnbereich abzuhängen, sondern greift auf neuronale Netzwerke zurück, die sich durch das Sehen gebildet haben. Dadurch lässt sich nun erklären, warum auch schon Neugeborene oder untrainierte Wildtiere einen Zahlensinn besitzen“, sagt Nieder.


    Contact for scientific information:

    Prof. Dr. Andreas Nieder
    Universität Tübingen
    Institut für Neurobiologie
    Telefon +49 7071 29-75347
    andreas.nieder[at]uni-tuebingen.de


    Original publication:

    Khaled Nasr, Pooja Viswanathan, Andreas Nieder: Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Science Advances 2019; 5:eaav7903, 8. Mai 2019


    Images

    In einem ‚deep-learning’-Netzwerk, das lediglich auf die Zuordnung von Fotos trainiert wurde, bilden sich spontan künstliche Neuronen heraus, die auf verschiedene Lieblingszahlen abgestimmt sind.
    In einem ‚deep-learning’-Netzwerk, das lediglich auf die Zuordnung von Fotos trainiert wurde, bilden ...
    Abbildung: Andreas Nieder
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).