idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/05/2019 11:23

So heiß wie im Inneren der Sonne

Sebastian Hollstein Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Physiker der Friedrich-Schiller-Universität Jena erstellen erstmals Plasma mithilfe von Nanoröhrchen und langwelligem, kurzgepulsten Laser

    Die drei klassischen Aggregatzustände fest, flüssig und gasförmig lassen sich in jeder normalen Küche beobachten, wenn man beispielsweise einen Eiswürfel zum Kochen bringt. Doch erhitzt man Materie noch weiter, so dass die Atome eines Stoffes zusammenstoßen und sich dadurch die Elektronen von ihnen abtrennen, dann erreicht man einen weiteren Zustand: Plasma. Über 99 Prozent der Materie im Weltall liegt in dieser Form vor, so etwa im Inneren von Sternen. Kein Wunder also, dass Physiker ein großes Interesse daran haben, solche Materie zu untersuchen. Doch Plasmen mit hoher Temperatur und Druck wie in den Sternen auf der Erde zu erzeugen und zu erforschen, ist aus verschiedenen Gründen alles andere als einfach. Physiker der Friedrich-Schiller-Universität Jena haben nun aber eine neue Methode entwickelt, mit der sie einige der Probleme während der Plasmaproduktion in den Griff bekommen können. Über ihre Ergebnisse berichten sie im renommierten Forschungsjournal „Physical Review X“.

    Nanodrähte lassen Licht durch

    „Um Materie so erhitzen zu können, dass sich ein Plasma bildet, brauchen wir entsprechend hohe Energie. In der Regel nutzen wir dazu Licht in Form eines großen Lasers“, erklärt Christian Spielmann von der Universität Jena. „Dieser muss aber sehr kurz gepulst sein, damit die Materie nicht sofort expandiert, wenn sie die entsprechende Temperatur erreicht hat, sondern für einen kurzen Zeitraum als dichtes Plasma zusammenhält.“ Bei diesem Versuchsaufbau trete aber ein Problem auf: „Wenn der Laser auf die Probe trifft, entsteht zwar ein Plasma. Dieses reagiert aber sofort wie ein Spiegel und reflektiert einen Großteil der eintreffenden Energie, die somit nicht in die komplette Materie durchdringt. Je länger die Wellenlänge vom Laserimpuls ist, desto kritischer wird das Problem“, sagt Zhanna Samsonova, die federführend am Projekt beteiligt war.

    Um diesen Spiegeleffekt zu vermeiden, haben die Jenaer Forscher Proben aus Siliziumdrähten verwendet, deren Durchmesser mit einigen hundert Nanometern kleiner ist als die Wellenlänge des eintreffenden Lichts, die etwa vier Mikrometer betrug. „Wir haben erstmals einen solch langwelligen Laser bei der Plasmaanregung zum Einsatz gebracht“, sagt Spielmann. „Das Licht dringt zwischen den Drähten in die Probe ein und erhitzt diese von allen Seiten, so dass für wenige Pikosekunden ein Plasma über ein wesentlich größeres Volumen entsteht, als wenn der Laser reflektiert worden wäre. Etwa 70 Prozent der Energie gelangt in die Probe.“ Dank des kurzen Laserpulses besteht das erhitzte Material zudem ein wenig länger, bevor es expandiert. Mithilfe von Röntgenstrahlspektroskopie können die Wissenschaftler schließlich wertvolle Informationen über den Zustand des Materials sammeln.

    Höchstwerte in Temperatur und Dichte

    „Mit unserer Methode lassen sich in einem Labor neue Höchstwerte in Temperatur und Dichte erreichen“, sagt Spielmann. Das Plasma sei mit etwa zehn Millionen Kelvin weitaus heißer als etwa Material an der Oberfläche der Sonne. Der Jenaer Physiker verweist zudem auf die Kooperationspartner innerhalb des Projektes: Für die Laserexperimente nutzten die Jenaer Experten eine entsprechende Einrichtung an der TU Wien, die Proben stammen von der Physikalisch-Technischen Bundesanstalt in Braunschweig, Computersimulationen zur Bestätigung der Erkenntnisse stammen von Kollegen aus Darmstadt und Düsseldorf.

    Die Ergebnisse der Jenaer Physiker sind ein bahnbrechender Erfolg, bieten sie der Plasmaforschung doch ganz neue Voraussetzung. Theorien zum Zustand von Plasma können direkt durch Experimente und daran anschließende Computersimulationen verifiziert werden. Kosmologische Vorgänge lassen sich so besser verstehen. Außerdem leisten die Wissenschaftler wertvolle Vorarbeiten für die Installation von Großgeräten. So entsteht etwa in Darmstadt derzeit der internationale Teilchenbeschleuniger „Facility for Antiproton and Ion Research“ (FAIR), der etwa 2025 in Betrieb gehen soll. Dank der Informationen lassen sich Bereiche herausfiltern, auf die ein genauerer Blick lohnt.


    Contact for scientific information:

    Dr. Zhanna Samsonova / Prof. Dr. Christian Spielmann
    Institut für Optik und Quantenelektronik der Universität Jena
    Max-Wien-Platz 1, 07743 Jena
    Tel.: 03641/947214, 03641/947231
    E-Mail: zhanna.samsonova[at]uni-jena.de, christian.spielmann[at]uni-jena.de


    Original publication:

    Zhanna Samsonova, et al.: Relativistic Interaction of Long-Wavelength Ultrashort Laser Pulses with Nanowires, Physical Review X, 2019, DOI: 10.1103/PhysRevX.9.021029


    Images

    In einem Labor des Instituts für Optik und Quantenelektronik der Universität Jena bereiten Dr. Zhanna Samsonova und Dr. Daniil Kartashov ein Experiment am JETI-Laser vor.
    In einem Labor des Instituts für Optik und Quantenelektronik der Universität Jena bereiten Dr. Zhann ...
    Foto: Jan-Peter Kasper/FSU
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).