idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/24/2019 10:10

Physiker finden Verwandte von Schrödingers Katze

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Die Katze aus Schrödingers berühmtem Gedankenexperiment verkörpert nicht nur die erstaunlichen Phänomene der Quantenwelt, sondern ist auch ein wichtiger Baustein für zukünftige Quantentechnologie. Wie ein internationales Forschungsteam unter der Leitung von Martin Ringbauer nun zeigte, ist Schrödingers Katze jedoch nicht allein, sondern Teil einer unendlich großen Familie.

    Quantenmechanische Phänomene decken sich selten mit unseren Alltagserfahrungen und scheinen oft schlicht absurd. Bereits 1935 machte Erwin Schrödinger, einer der Väter der Quantenmechanik, dies in einem berühmten Gedankenexperiment sehr deutlich, in dem eine Katze in einer skurrilen Quantensuperposition von tot und lebendig landet. Die Katze ist dabei weder das eine noch das andere (und auch nicht beides gleichzeitig), sondern in einem sensiblen neuartigen Quantenzustand, wenigstens solange niemand nachsieht.
    Doch Schrödinger schuf mit seiner Katze nicht nur eine absurde Geschichte, sondern auch einen wichtigen Baustein für moderne Quantentechnologien von Quantencomputern bis zu extrem sensiblen Sensoren. Forscher weltweit arbeiten daran Schrödingers Katze in Quantensystemen wie einzelnen Atomen oder Lichtteilchen nachzubilden. „Bringt man ein Quantensystem in solch eine Superposition von zwei klassischen Zuständen, so bilden sich sensible Interferenzphänomene, welche man für Quantentechnologie nutzen kann“, erklärt Martin Ringbauer vom Institut für Experimentalphysik von der Universität Innsbruck. Man kann sich dies vorstellen wie eine Überlagerung von Wasserwellen, die entsteht, wenn man zwei Steine gleichzeitig ins Wasser wirft.

    Quanten Hyperwürfel

    Schrödingers Katze ist nicht die einzige ihrer Art: 2001 wurde mit dem sogenannten Kompasszustand ein erster Verwandter entdeckt. Dieser Zustand besteht aus einer Superposition von nicht zwei, sondern vier klassischen Zuständen, welche wie die Hauptrichtungen eines Kompasses angeordnet sind. Schrödingers Katze und Kompasszustände sind jedoch nur der Anfang, berichtet nun ein internationales Team von Physikern aus Österreich, Australien und dem Vereinigten Königreich. Sowohl Schrödingers Katze als auch der Kompass sind Teil einer unendlich großen Familie von Zuständen, die aus Superpositionen bestehen, deren klassische Bausteine die Ecken von multi-dimensonalen Hyperwürfeln darstellen. „Wir haben diese Hyperwürfel-Zustände fast zufällig entdeckt, als wir mit winzigen Membranen experimentierten, um Zustände für neuartige Quantensensoren zu entwickeln“, erzählt Ringbauer.

    Von Hyperwürfeln zu Quantensensoren

    „Die Auflösung eines Sensors ist zu einem großen Teil durch dessen Skala bestimmt. Will man einen sehr genauen Maßstab erreichen, müssen die Abstände zwischen den Markierungen sehr klein sein. Versucht man jedoch diese Abstände kleiner und kleiner zu machen, stößt man früher oder später an eine quantenmechanische Grenze - das Heisenbergsche Unschärfeprinzip“, erläutert Ringbauer. Quanten Hyperwürfel Zustände können diese Grenze umgehen, in dem sie sich Quanteninterferenz zu Nutze machen. „Am Beispiel der Steine im Wasser sieht man, dass selbst große Steine in der Überlagerung der Wellen zu feinen Mustern führen. Diese können durchaus deutlich kleiner sein als die Steine, die sie auslösen. Ähnlich ist es bei Quantenzuständen: Selbst wenn die Zustände an den Ecken der Hyperwürfel eine Mindestgröße haben, so ergeben sich dennoch immer feinere Interferenzmuster, je höher die Dimension des Hyperwürfels wird“, sagt Ringbauer. Dies macht Hyperwürfel-Zustände zu vielversprechenden Kandidaten für die Konstruktion neuartiger Quantensensoren, in denen die feinen Interferenzmuster die Rolle der Markierungen des Maßstabes übernehmen.

    Die Arbeit ist im Fachmagazin Physical Review Letters erschienen und wurde unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Union finanziell unterstützt.


    Contact for scientific information:

    Dr. Martin Ringbauer
    Institut für Experimentalphysik
    Universität Innsbruck
    Tel.: +43 512 507 52458
    E-Mail: martin.ringbauer@uibk.ac.at


    Original publication:

    Quantum Hypercube States. L. A. Howard, T. J. Weinhold, F. Shahandeh, J. Combes, M. R. Vanner, A. G. White, and M. Ringbauer. Phys. Rev. Lett. 123, 020402
    https://doi.org/10.1103/PhysRevLett.123.020402


    Images

    Hyperwürfel-Zustände bestehen aus mehreren Quantensupositionen, die die Ecken von multidimensionalen Würfeln abbilden.
    Hyperwürfel-Zustände bestehen aus mehreren Quantensupositionen, die die Ecken von multidimensionalen ...
    EQUS
    None


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).