idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/25/2019 20:00

Hidden genetic variations power evolutionary leaps

Beat Müller Kommunikation
Universität Zürich

    Laboratory populations that quietly amass ‘cryptic’ genetic variants are capable of surprising evolutionary leaps, according to a paper in the July 26 issue of Science. A better understanding of cryptic variation may improve directed evolution techniques for developing new biomolecules for medical and other applications

    Genetic variation – that is, accumulated mutations in the DNA – is the fuel for all evolutionary change: the more genetic variation, the faster evolution works and the more possibilities for novel adaptive solutions.

    But one kind of genetic variation – hidden, or “cryptic,” variation – doesn’t alter the appearance or behavior of an organism in its usual environment.

    “It’s an underappreciated kind of genetic variation,” says corresponding author Andreas Wagner, an evolutionary biologist at the University of Zurich and external professor at the Santa Fe Institute, “and it plays an important role in evolution.”

    Previous work has shown that cryptic variation in natural populations promotes rapid evolutionary adaptation. But the underlying molecular mechanisms were unclear.

    To explore those mechanisms, Wagner’s team worked with populations of the gut bacterium E. coli that carried a plasmid with a gene for a yellow fluorescent protein (YFP). The team designed a two-stage experiment. In stage 1, they used mutagenic PCR to increase variation in the YFP gene. Simultaneously, they selected for a narrow range of yellow fluorescence. Any bacteria not sufficiently yellow were excluded, a process called ‘stabilizing selection.’ In this way, they built up deep stores of cryptic genetic variation without altering the yellow color of the YFP protein.

    During stage 2, the team changed the selection rules and began selecting for E. coli that fluoresced in the green part of the spectrum (‘directional selection’). They also introduced control populations of E. coli that lacked enhanced cryptic variation in YFP. The E. coli cell lines with stores of cryptic variation evolved green fluorescent protein (from YFP genes) that were both greener and genetically more diverse than any produced by the control E. coli lineages.

    In the experiment, says co-author Joshua Payne (ETH Zurich), cryptic variation did more than drive evolutionary adaptation faster. Cell lines with deep reserves of cryptic variation evolved greener YFP proteins, forms of the protein that were inaccessible to regular bacteria, and they evolved by multiple unique routes not available to regular E. coli.

    Current laboratory directed evolution often leads to the same evolutionary outcomes each time. The new work shows how amassing cryptic variation can open doors to otherwise inaccessible regions of protein sequence space, says first author Jia Zheng, a post doctoral researcher at the University of Zurich.

    In the wild, cryptic variation helps fish adapt to life in caves. In the lab, cryptic variation might help a biomolecule bind a new receptor. “Our work can help develop new directed evolution strategies to find innovative biomolecules for biotechnological and medical applications,” says Zheng.

    Like a fat savings account, cryptic variation is a store of variation that becomes available in an emergency to fuel rapid evolutionary change critical to the survival of a lineage and useful for molecular biologists.


    Contact for scientific information:

    Prof. Dr. Andreas Wagner
    Department of Evolutionary Biology and Environmental Studies
    University of Zurich
    Phone: +41 44 635 61 41
    E-mail: andreas.wagner@ieu.uzh.ch

    Dr. Jia Zheng
    Department of Evolutionary Biology and Environmental Studies
    University of Zurich
    Phone +41 44 635 61 46
    E-mail: jia.zheng@ieu.uzh.ch


    Original publication:

    Jia Zheng, Joshua L. Payne, Andreas Wagner. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science. July 26, 2019. DOI: 10.1038/s41559-019-0939-6


    Images

    Criteria of this press release:
    Journalists
    Biology, Environment / ecology, Medicine
    transregional, national
    Research results, Transfer of Science or Research
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).