idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/09/2019 13:39

Doch keine Wassermoleküle im Selektivitätsfilter von Kaliumkanälen

Silke Oßwald Presse- und Öffentlichkeitsarbeit
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

    Passieren Kaliumionen alleine den Selektivitätsfilter eines Kaliumkanals oder sitzen Wassermoleküle zwischen den Ionen? Diese Frage ist seit Jahren umstritten. Forscher um Prof. Adam Lange vom Berliner Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) haben nun zeigen können, dass keine Wassermoleküle durch den Kaliumkanal wandern. Da die Versuche erstmals an Zellmembranen unter natürlichen Bedingungen durchgeführt wurden, haben die Forscher einen starken Beweis in der Hand. Ihre Arbeit ist soeben im Fachjournal „Science Advances“ erschienen.

    Unsere Zellen brauchen Kaliumionen, zum Beispiel um Nervenimpulse weiterzuleiten oder die Herzfrequenz zu steuern. Darum ist fast jede menschliche Zelle - oder genauer gesagt die Membran einer Zelle - mit Kaliumkanälen ausgestattet. Weil Kaliumkanäle eine fundamentale Bedeutung für biologische Prozesse haben und schon kleinste Veränderungen zu schweren Krankheiten führen können, werden die winzigen Eiweißmoleküle weltweit erforscht. Für die Aufklärung der Struktur von Kaliumkanälen hat ein US-Forscher im Jahr 2003 sogar den Nobelpreis für Chemie erhalten.

    Kontroverse Debatte um zwei verschiedene Mechanismen

    Unklar war jedoch, wie genau Kalium den Kanal passiert, um über die Zellmembran zu gelangen. Lange Zeit ging man davon aus, dass auf jedes Kaliumion ein Wassermolekül folgt und die Elemente dann aufgereiht wie an einer Kette nacheinander den engsten Teil des Kaliumkanals, den sogenannten Selektivitätsfilter, passieren. Erklärt wurde das damit, dass Kaliumionen positiv geladen sind und sich ohne die Zwischenmoleküle gegenseitig abstoßen würden. Dieser Mechanismus wurde 2014 von Göttinger Forschern um Prof. Bert de Groot jedoch in Frage gestellt: Computersimulationen zeigten, dass im Selektivitätsfilter von Kaliumkanälen gar keine Wassermoleküle vorhanden sind. Doch klar war die Sache damit noch nicht. Denn anschließend wurden weitere Arbeiten publiziert, die den älteren Mechanismus stützten und den neuen anscheinend widerlegten.
    Nun haben Forscher vom Berliner Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Klarheit in die kontroverse Debatte gebracht: Dr. Carl Öster und Kitty Hendriks aus der Arbeitsgruppe von Prof. Adam Lange konnten zusammen mit weiteren Kollegen am FMP erstmals mittels Festkörper-Kernspinresonanz (NMR)-Spektroskopie zeigen, dass Kaliumionen tatsächlich ohne Wassermoleküle durch die Kaliumkanäle wandern. Die Kaliumionen sitzen demnach direkt hintereinander und schieben sich gegenseitig von unten nach oben durch den Kaliumkanal.

    Unter natürlichen Bedingungen ist der Selektivitätsfilter von Kaliumkanälen frei von Wasser

    „Die Technik, die wir verwendet haben, erlaubt es, Membranproteine in echten Zellmembranen unter natürlichen Bedingungen anzuschauen, also etwa bei Raumtemperatur oder physiologischen Salzkonzentrationen“, erklärt Kitty Hendriks. „Damit konnten wir zeigen, dass unter diesen Bedingungen definitiv kein Wasser zwischen den Kaliumionen im Selektivitätsfilter zu finden ist.“
    Die ersten Hinweise darauf kamen aus Computersimulationen und es gibt auch röntgenkristallografische Daten, die für die Abwesenheit von Wassermolekülen im Selektivitätsfilter von Kaliumkanälen sprechen. „Diese Untersuchungen wurden allerdings unter künstlichen Bedingungen durchgeführt“, betont Dr. Carl Öster. „Mit unseren ergänzenden Daten aus der NMR-Spektroskopie haben wir jetzt ein schwergewichtiges Argument in der Hand, dass der neuere Mechanismus der richtige ist.“
    Den Nachweis, dass keine Wassermoleküle zwischen den Kaliumionen sitzen, haben die FMP-Forscher zusammen mit Kollegen vom Max Planck Institut für Biophysikalische Chemie um Prof. Bert de Groot erbracht, deren computergestützte Molekulardynamiksimulationen ebenfalls mit in die Arbeit eingeflossen sind.

    Ein Fortschritt für die Forschung

    Entscheidend für die Aufklärung des Mechanismus war, dass das FMP ein weltweit führendes Zentrum für NMR-spektroskopische Untersuchungen ist und diese komplexe Technik ständig weiterentwickelt. „Vor fünf Jahren hätten wir das sicher so noch nicht zeigen können, aber jetzt sind wir so weit, dass wir diese wichtige Fragestellung gut beantworten können“, sagt Arbeitsgruppenleiter Prof. Adam Lange, dessen Schwerpunkt auf der Erforschung von Membranproteinen wie Ionenkanälen liegt. Er fügt hinzu: „Da die Abläufe in den Kaliumkanälen elementar für unsere Gesundheit sind, haben unsere Ergebnisse eine große Bedeutung, auch über die Grundlagenforschung hinaus.“
    Finanziell unterstützt wurde die Arbeit durch das European Research Council im Rahmen eines ERC Grants an Prof. Lange und durch die Deutsche Forschungsgemeinschaft (DFG; Forschergruppe 2518).

    Bildunterschrift: Kaliumtransport durch den Selektivitätsfilter eines Kaliumselektiven Ionenkanals. Der Kanal - in orange dargestellt - ist nur durchlässig für Kaliumionen (große grüne Kugeln). Wassermoleküle (kleine blaue Kugeln) und andere Ionen wie z.B. Natrium (nicht gezeigt) können den Kanal hingegen nicht passieren.


    Contact for scientific information:

    Prof. Adam Lange
    Abteilung Molekulare Biophysik (FMP)
    alange@fmp-berlin.de
    Tel: 0049 30 94793-190
    www.leibniz-fmp.de/lange


    Original publication:

    Carl Öster*, Kitty Hendriks*, Wojciech Kopec, Veniamin Chevelkov, Chaowei Shi, Dagmar Michl, Sascha Lange, Han Sun, Bert L. de Groot, Adam Lange. The conduction pathway of potassium channels is water free under physiological conditions, Science Advances 31. Juli 2019, DOI: 10.1126/sciadv.aaw6756


    More information:

    https://www.leibniz-fmp.de/de/press-media/filmportraits-2017/filmportraits-2017-...


    Images

    siehe Textende
    siehe Textende
    Barth van Rossum
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Medicine, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).