idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/12/2019 08:58

"Flying fish" robot can dive and fly

Cornelia Zogg Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

    A bio-inspired bot uses water from the environment to create a propelling gas and launch itself from the water’s surface. The robot had been developed by researchers at Imperial College London. It can travel 26 meters through the air after take-off and could be used to collect water samples in hazardous and cluttered environments, such as during flooding or when monitoring ocean pollution, report the team lead by Mirko Kovac, who also heads the joint "Materials and Technology Center of Robotics" at Empa, in the latest issue of "Science Robotics".

    Robots that can transition from water to air are desirable in certain situations, but the launch requires a lot of power, which has been difficult to achieve in small robots. Now, researchers at Imperial College London have invented a system that requires just 0.2 grams of calcium carbide powder in a combustion chamber. The only moving part is a small pump that brings in water from the environment the robot is sat in, such as a lake or ocean.

    The water is then combined with the calcium-carbide powder in a reaction chamber, producing a burnable acetylene gas. As the gas ignites and expands, it pushes the water out as a jet propelling the robot clear of the water and into a glide of up to 26 meters.

    “Water-to-air transition is a power-intensive process, which is difficult to achieve on a small-scale flying vehicle that needs to be lightweight for flight", explains Mirko Kovac, Director of the "Aerial Robotics Laboratory" at Imperial and the joint "Materials and Technology Center of Robotics" at Empa. “We have used water-reactive chemicals to reduce the materials that the robot needs to carry. Since the chamber fills passively and the environmental water acts as a piston, we can create a full combustion cycle with only one moving part, which is the pump that mixes the water with the fuel.”

    A lot of thrust

    The team tested the robot in the lab, in a lake, and in a wave tank, showing that it can escape from the water’s surface even under rather rough conditions. While similar robots often require calm conditions to leap from the water, the team’s invention generates a force 25 times the robot’s weight, giving it a greater chance of overcoming the waves.

    The robot, which weighs just 160 grams, can "jump" multiple times after refilling its water tank. This could allow it to float on water and take samples at multiple points without additional power, saving energy over longer distances compared to an electrically powered robot.

    The Imperial team is now working with researchers at Empa to build new vehicles using advanced materials and begin field trials of the robot in a range of environments, including monitoring the oceans around coral reefs and offshore energy platforms.

    Raphael Zufferey, first author on the paper said: “These kinds of low-power, tether-free robots could be really useful in environments that are normally time- and resource-intensive to monitor, including after disasters such as floods or nuclear accidents.”

    The tests were carried out in the Brahmal Vasudevan Multi-terrain Robotics Arena, which was founded on a philanthropic gift from Brahmal Vasudevan.


    Contact for scientific information:

    Dr. Mirko Kovac
    Empa, Materials and Technology Center of Robotics
    Phone +41 58 765 46 89
    mirko.kovac@empa.ch


    Original publication:

    R Zufferey, A Ortega Ancel, A Farinha, R Siddall, SF Armanini, M Nasr, RV Brahmal, G Kennedy, M Kovac; Consecutive aquatic jump-gliding with a water-reactive fuel; Science Robotics; doi: 10.1126/scirobotics.aax7330


    More information:

    https://www.empa.ch/web/s604/aerial-robotics


    Images

    Criteria of this press release:
    Journalists
    Electrical engineering, Materials sciences, Mechanical engineering, Traffic / transport
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).