idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/01/2019 10:53

TU Berlin: Wenn Autos Wasser statt Abgase produzieren

Stefanie Terp Stabsstelle Kommunikation, Events und Alumni
Technische Universität Berlin

    Wissenschaftler*innen der TU Berlin entwickeln in Kooperation mit BMW neuartige Katalysatormaterialien für leistungsfähige Auto-Brennstoffzellen

    Wasserstoff-Brennstoffzellen gelten als ein Hoffnungsträger in der Diskussion um den Fahrzeugantrieb der Zukunft. Ihr größter Vorteil: Wasser und Wärme sind die einzigen „Abfallprodukte“, die sie ausstoßen. Einer der aktuell größten Nachteile: Die Kosten, die nicht zuletzt von dem sehr teuren Material Platin abhängen, das für den Katalysator in der Brennstoffzelle benötigt wird. Senkt man den Platingehalt in der Brennstoffzelle, sinkt aber auch die erzeugte elektrische Leistung noch schneller. Prof. Dr. Peter Strasser von der TU Berlin und seinen Mitarbeiter*innen am Fachgebiet Elektrokatalyse und Materialien ist es in Kooperation mit Wissenschaftler*innen von BMW jetzt gelungen, in einer autogerechten Wasserstoff-Brennstoffzelle das Katalysator-Trägermaterial chemisch so zu designen, dass trotz eines geringen Platineinsatzes hohe elektrische Leistung erzeugt wird. Ihre Ergebnisse wurden jetzt in der renommierten Fachzeitschrift Nature Materials veröffentlicht.

    Bei Brennstoffzellen-Fahrzeugen handelt es sich letztlich auch um E-Autos. Der Unterschied: Der benötigte Strom wird nicht in einer Batterie gespeichert, sondern an Bord während der Fahrt nach Bedarf erzeugt. An zwei separaten Elektroden der Brennstoffzelle reagiert Wasserstoff, der in einem speziellen Tank im Auto mitgeführt wird, mit dem Sauerstoff der Umgebungsluft. Dabei entstehen Strom und Wasser. Der erzeugte Strom wird verbraucht oder in einer kleinen Pufferbatterie zwischengespeichert. Für die elektrochemische Reaktion an der Kathode der Brennstoffzelle wird ein Platin-Katalysator benötigt. „Selbst wenn die zur Zeit auf dem Markt befindlichen Brennstoffzellen-Autos auch nur noch 30 Gramm Platin pro Brennstoffzelle einsetzen, ist das immer noch weit entfernt von dem langfristig angestrebten und nachhaltigen Ziel von fünf Gramm Platin pro Brennstoffzellen-Auto“, so Peter Strasser.

    Das Problem: Die Platin-Nanopartikel müssen in einer extrem gleichmäßigen Verteilung mit einem sogenannten Ionomer, einem Wasserstoff-Ionen (Protonen) leitenden Kunststoff, auf die Kohlenstoffträgersubstanz aufgebracht werden. Je weniger Platin-Nanopartikel verwendet werden sollen, desto wichtiger ist die gleichmäßige Verteilung des Ionomers, damit alle beteiligten Reaktanden Zugang zu den Platinpartikeln haben, die als Katalysator fungieren. Aus einer ungleichmäßigen Ionomer-Verteilung resultiert ein hoher Widerstand gegen den Transport von Sauerstoffmolekülen, was wiederum zu einem hohen Verlust in der erzeugten elektrischen Spannung und Leistung führt. „In der jetzt veröffentlichten Arbeit beschreiben wir die Herstellung eines neuartigen, chemisch veränderten Kohlenstoffträgermaterials mit maßgeschneiderten Oberflächeneigenschaften. Dadurch ist es uns gelungen, eine bisher unerreicht gleichmäßige Verteilung des Ionomers auf diesem Trägermaterial zu erzielen. So erreichen wir hohe Leistungsdichten bei geringem Platineinsatz“, so der Wissenschaftler. Dieser maßgeschneiderte Katalysator erzielte eine bislang unerreichte Leistungsfähigkeit und Stabilität bei der Stromerzeugung in der Brennstoffzelle – bei einem um mindestens 50 Prozent geringeren Verbrauch von Platin.

    „Das Besondere an unserem Ansatz: Wir haben direkt mit einer autogerechten Brennstoffzelle gearbeitet, so dass unsere Ergebnisse die Chance haben, unmittelbar in die nächsten Generationen des Brennstoffzellen-Autos einzufließen“, freut sich Peter Strasser über den Erfolg.

    Mehr Informationen: https://doi.org/10.1038/s41563-019-0487-0

    Weitere Informationen erteilt Ihnen gern:
    Prof. Dr. Peter Strasser
    TU Berlin
    Fachgebiet Technische Chemie
    The electrochemical energy, catalysis, and materials science group
    Tel.: 030/314-22261
    E-Mail: peter.strasser@tu-berlin.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Economics / business administration
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).