idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/24/2019 10:26

Warum es künstliche Intelligenz eigentlich noch nicht gibt

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Umbruch, Revolution, Megatrend, vielleicht auch Gefahr: Das Thema künstliche Intelligenz durchdringt alle Branchen, beschäftigt sämtliche Medien. Forscherinnen und Forscher des Instituts für Neuroinformatik an der Ruhr-Universität Bochum (RUB) befassen sich seit 25 Jahren damit. Ihr Credo: Damit Maschinen wirklich intelligent agieren können, müssen neue Ansätze maschinelles Lernen erst einmal effizienter und flexibler machen.

    Die Lösung immer mitgeben

    „Zwei Arten des maschinellen Lernens sind heute erfolgreich: zum einen tiefe neuronale Netze, auch als Deep Learning bekannt. Zum anderen das Verstärkungslernen“, erklärt Prof. Dr. Laurenz Wiskott, Inhaber des Lehrstuhls Theorie Neuronaler Systeme der RUB. Beide basieren darauf, dass man ein System auf eine ganz bestimmte Aufgabe trainiert, zum Beispiel eine Entscheidung zu treffen. Man gibt das gewünschte Ergebnis im Training mit der Aufgabe zusammen vor. Im Laufe der Zeit lernt der Computer dann, die Aufgabe immer schneller treffsicher zu lösen – in vielen Fällen besser als der Mensch.

    Im Grunde strohdoof

    Aber: „Das Problem mit diesen Prozessen maschinellen Lernens ist, dass sie im Grunde strohdoof sind“, sagt Laurenz Wiskott. „Die zugrunde liegenden Techniken stammen aus den 1980er-Jahren. Der Grund für ihren heutigen Erfolg liegt nur darin, dass wir heute größere Rechenkapazitäten haben und mehr Daten.“ Das macht es möglich, die eigentlich ineffizienten Lernprozesse in ihren unzähligen Durchgängen in kürzester Zeit durchlaufen zu lassen und neuronale Netze mit Massen von Bildern und Bildbeschreibungen zu füttern, um sie zu trainieren.

    „Wir wollen aber wissen: Wie lässt sich zum einen das viele unsinnige Training vermeiden? Und vor allem: Wie können wir maschinelles Lernen flexibler machen?“, bringt es Wiskott auf den Punkt. Denn künstliche Intelligenz mag in genau der einen Aufgabe, für die sie trainiert wurde, dem Menschen überlegen sein – verallgemeinern oder auf verwandte Aufgaben übertragen kann sie ihr Wissen nicht.

    Neue Ansätze für das Lernen von Maschinen

    Die Forscherinnen und Forscher am Institut für Neuroinformatik setzen daher auf neue Strategien, die Maschinen helfen, Strukturen selbstständig zu entdecken. Dazu kann zum Beispiel die Aufgabe gehören, Cluster zu bilden oder langsame Veränderungen in Videos zu entdecken und auszuwerten. Durch dieses unüberwachte Lernen können Computer die Welt eigenständig entdecken und somit auch Aufgaben angehen, für sie nicht im Detail trainiert wurden.

    Angeklickt

    Einen ausführlichen Beitrag zu dem Thema finden Sie im Wissenschaftsmagazin Rubin. Texte auf der Webseite und Bilder aus dem Downloadbereich dürfen unter Angabe des Copyrights für redaktionelle Zwecke honorarfrei verwendet werden.

    Pressekontakt

    Prof. Dr. Laurenz Wiskott
    Lehrstuhl Theorie Neuronaler Systeme
    Institut für Neuroinformatik
    Ruhr-Universtität Bochum
    Tel.: 0234 32 27997
    E-Mail: laurenz.wiskott@rub.de


    Contact for scientific information:

    Prof. Dr. Laurenz Wiskott
    Lehrstuhl Theorie Neuronaler Systeme
    Institut für Neuroinformatik
    Ruhr-Universtität Bochum
    Tel.: 0234 32 27997
    E-Mail: laurenz.wiskott@rub.de


    More information:

    https://news.rub.de/wissenschaft/2019-10-24-neuroinformatik-warum-es-kuenstliche... - Beitrag mit Bildern zum Herunterladen


    Images

    Criteria of this press release:
    Journalists
    Information technology
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).