idw - Informationsdienst
Wissenschaft
Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.
Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser umgewandelt, wofür das Enzym Oxidase verantwortlich ist. Es stellt den letzten Schritt der sogenannten Atmungskette dar.
Energiegewinnung mit Hilfe des Enzyms Oxidase
Während Menschen nur einen Typ dieser Oxidasen besitzen, hat der bakterielle Modellorganismus Escherichia coli (E. coli) drei alternative Enzyme zur Verfügung. Um besser zu verstehen, warum E. coli und andere Bakterien mehrere Oxidasen brauchen, haben Prof. Bettina Böttcher vom Rudolf-Virchow-Zentrum in Zusammenarbeit mit Prof. Thorsten Friedrich (Universität Freiburg) die molekulare Struktur der Cytochrom-bd-Oxidase aus E. coli aufgeklärt. Diesen Typ von Oxidasen findet man nur in Bakterien und den mikrobiellen Archaeen.
Bakterien besitzen andere Typen von Oxidasen
Die namengebenden Cytochrome, zwei vom Typ b und eines vom Typ d, sind die entscheidenden eisenhaltigen Gruppen, die der Oxidase ihre Funktion verleihen. Am Cytochrom d wird der Sauerstoff gebunden und zu Wasser umgesetzt. Bei der Strukturaufklärung stellte sich heraus, dass die Architektur der Cytochrom-bd-Oxidase aus E. coli sehr ähnlich der Struktur aus einem anderen Bakterium ist, Geobacillus thermodenitrificans. „Zu unserer großen Überraschung zeigte sich jedoch, dass ein Cytochrom b und das Cytochrom d die Positionen gewechselt haben und damit den Ort der Sauerstoffumsetzung innerhalb des Enzyms“, berichtet Prof. Thorsten Friedrich.
Die Ursache für diesen Wechsel könnte sein, dass die Cytochrom-bd-Oxidase eine zweite Funktion erfüllen kann: Neben der Energiegewinnung kann es zum Schutz gegen oxidativen Stress und Stress durch Nitroxide dienen. Besonders pathogene Bakterienstämme zeigen eine hohe Aktivität der Cytochrom-bd-Oxidase. Da Menschen diesen Typ der Oxidase nicht besitzen, könnten diese Ergebnisse einen wichtigen Hinweis auf die Entwicklung neuer antimikrobieller Wirkstoffe liefern, die auf die Cytochrom-bd-Oxidase von Krankheitserregern wie Mykobakterien abzielen.
Maßgeblich für den Erfolg war das neue Hochleistungselektronenmikroskop, das seit 2018 unter der Leitung von Prof. Böttcher am Rudolf-Virchow-Zentrum betrieben wird. „Die Cytochrom-bd-Oxidase stellte eine anspruchsvolle Probe für die Kryo-Elektronenmikroskopie dar, weil es eines der kleinsten Membranproteine ist, dessen Struktur mit dieser Technik bisher aufgeklärt wurde“, erklärt Prof. Bettina Böttcher.
Besonderheiten dieser Technik sind extrem tiefe Temperaturen bis zu minus 180 Grad Celsius und eine Auflösung, die sich in der Größenordnung von Atomen bewegt. Sie ermöglicht es, biologische Moleküle und Komplexe in Lösung zu untersuchen, die zuvor schockgefroren wurden, und deren dreidimensionale Struktur zu rekonstruieren. Mit einer Spannung von 300.000 Volt beschleunigt das Mikroskop die Elektronen, mit denen es die Proben „abtastet“.
Die Studie wurde im November 2019 im Fachjournal Nature Communications veröffentlicht.
Personen:
Prof. Dr. Bettina Böttcher ist Professorin für Biochemie und leitet seit 2016 eine Forschungsgruppe am Lehrstuhl für Biochemie und am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Julius-Maximilians-Universität (JMU) Würzburg.
Prof. Dr. Thorsten Friedrich ist seit 2001 Professor für Biochemie in der Fakultät für Chemie und Pharmazie der Albert-Ludwigs-Universität Freiburg und leitet seit 2016 das von der DFG geförderte Graduiertenkolleg 2202 „Transport über und in Membranen“.
Pressekontakt:
Dr. Daniela Diefenbacher (Pressestelle, Rudolf-Virchow-Zentrum)
Tel. 0931 31 88631, daniela.diefenbacher@uni-wuerzburg.de
Dr. Tim Rasmussen (AG Böttcher, Rudolf-Virchow-Zentrum)
Tel. 0931 31 89659, tim.rasmussen@uni-wuerzburg.de
Prof. Dr. Bettina Böttcher (Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg)
Tel. 0931 31 84193, bettina.boettcher@uni-wuerzburg.de
Prof. Dr. Thorsten Friedrich (Universität Freiburg)
Tel. 0761 203 6060, friedrich@bio.chemie.uni-freiburg.de
Alexander Theßeling#, Tim Rasmussen#, Sabrina Burschel, Daniel Wohlwend, Jan
Kägi, Rolf Müller, Bettina Böttcher* and Thorsten Friedrich*: Homologous bd oxidases share the same architecture but differ in mechanism. Nature Communications, Nov 2019, DOI:10.1038/s41467-019-13122-4
Struktur der Cytochrom-bd-Oxidase: Experimentellen Daten in grau und das daraus abgeleitete molekula ...
Rudolf-Virchow-Zentrum, Universität Würzburg
None
Criteria of this press release:
Journalists, Scientists and scholars, all interested persons
Biology, Chemistry, Medicine
transregional, national
Cooperation agreements, Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).