idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/26/2019 09:33

Hirnscan-Implantat liefert Daten zur Aktivität von Neuronen

Dr. Daniel Fleiter Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biologische Kybernetik

    Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik und der Universität Stuttgart stellen in Nature Methods weltweit ersten implantierbaren Miniatur-Kernspintomographen vor

    Neurowissenschaftler und Elektroingenieure aus Deutschland und der Schweiz haben ein Implantat entwickelt, das Forschern erstmals hochauflösende Daten zur neuronalen Aktivität im Gehirn liefert. Die gestern in Nature Methods vorgestellte Erfindung ermöglicht die Kombination räumlicher Informationen zur Hirnphysiologie mit Erkenntnissen zu Wechselwirkungen von Nervenzellen in Echtzeit. Diese weltweit erste und einmalige Innovation integriert die Funktionalität eines Magnetresonanztomographen (MRT) auf einem winzigen Chip.

    Die wissenschaftliche Arbeitsgruppe um Klaus Scheffler vom Max-Planck-Institut für biologische Kybernetik und der Universität Tübingen, sowie Jens Anders von der Universität Stuttgart haben hiermit einen technologischen Brückenschlag geschafft, der die bisher eng gesetzten elektrophysikalischen Grenzen klassischer Hirnscan-Methoden sprengt. Die haarfeine Sonde besteht aus einem winzigen Magnetresonanztomographen und kombiniert die Vielseitigkeit bekannter räumlicher MRT-Analysen mit der Genauigkeit eines implantierbaren Sensors, der an einem Punkt im Gehirn neuronale Ereignisse in Echtzeit messen kann.

    "Unser neuartiges Konzept, einen Kernspinresonanzdetektor auf einem winzigen Chip unterzubringen ermöglicht es uns, die typischen elektromagnetischen Störungen von Magnetresonanzsignalen erheblich zu verringern und viel feinere und sowohl zeitlich als auch räumlich hochaufgelöste Daten zu erhalten. So können wir Neurowissenschaftler erstmals sehr präzise Informationen aus winzigen Bereichen des Gehirns generieren und mit bildgebenden Informationen zur Hirnphysiologie kombinieren", erklärten die Hauptautoren der Nature Publikation Klaus Scheffler und Jens Anders. "Mit dieser Methode können wir somit nun spezifische Aktivitäten und Funktionalitäten im Gehirn sehr viel besser verstehen und auch Unregelmäßigkeiten von Hirnfunktionen ausmachen."

    Laut Scheffler und seiner Gruppe könnte ihre Erfindung die Möglichkeit eröffnen, Mechanismen oder Aktivierungsmuster neuronaler Aktivität bis hin zu spezifischen, insbesondere krankhaften, neuronalen Funktionen im Hirngewebe zu entdecken.

    "Unsere Sonde ist technisch auch skalierbar, d.h. es besteht die Möglichkeit, Daten aus mehr als einem einzigen Bereich des Gehirns zu erfassen. So zum Beispiel aus angrenzenden Hirnarealen – dies aber auf demselben winzigen Implantat", erklärt Scheffler weiter. „Die Skalierbarkeit der verwendeten Technologie ermöglicht darüber hinaus auch die Integration weiterer Messmodalitäten wie z.B. elektrophysiologischer oder optogenetischer Sensoren im selben Implantat“, ergänzt Anders.

    Die Teams aus Tübingen und Stuttgart sind sehr zuversichtlich, dass ihr technischer Ansatz dazu beitragen kann, die komplexen physiologischen Prozesse neuronaler Netzwerke des Gehirns präzise zu erfassen und zusätzliche Merkmale zu entdecken, die noch tiefere Einblicke in die komplexe Funktionalität des Gehirns ermöglichen.

    Mit dem Ziel, neue Technologien zu entwickeln, die in der Lage sind, die strukturelle und biochemische Zusammensetzung des Gehirns zu verstehen, ebnet diese neueste Innovation den Weg für zukünftige hochspezifische Kartierungstechniken, bioenergetische Prozesse in Gehirnzellen und die Aktivität und Aufgabe einzelner Neuronen zu verstehen.


    Contact for scientific information:

    Prof. Dr. Klaus Scheffler
    Max-Planck-Institut für biologische Kybernetik
    Universität Tübingen, Werner Reichardt Centrum für Integrative Neurowissenschaften
    Telefon: +49 7071 601-701
    e-Mail: klaus.scheffler@tuebingen.mpg.de

    Prof. Dr. Jens Anders
    Universität Stuttgart, Institut für Intelligente Sensorik und Theoretische Elektrotechnik (IIS)
    Telefon: +49 711 685 67250
    e-Mail: jens.anders@iis.uni-stuttgart.de


    Original publication:

    https://doi.org/10.1038/s41592-019-0640-3


    Images

    Illustration des Miniatur-MRTs im Hirngewebe.
    Illustration des Miniatur-MRTs im Hirngewebe.
    © whitehoune - stock.adobe.com, Max-Planck-Institut für biologische Kybernetik, Universität Stuttgart. Bildmontage: Martin Vötsch (design-galaxie.de).
    None


    Criteria of this press release:
    Journalists
    Biology, Electrical engineering, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).