idw - Informationsdienst
Wissenschaft
MALT1 blockers have long been in clinical use for the treatment of blood cancers. A study suggests that these drugs could potentially also be developed as a treatment option for glioblastoma, the most common and lethal type of brain tumour.
Heidelberg, 27 November 2019 – For a long time, cancer research has largely focused on so-called oncogenes – genes that can cause cancer when mutated. While targeting these genes has led to the successful development of a number of valuable drugs, this approach is hampered by the fact that tumours often become resistant to these treatments.
A study conducted by Julie Gavard at the Université de Nantes, CNRS, INSERM, France, and her team, published today in The EMBO Journal, is now based on a different concept, termed non-oncogene addiction. During disease progression, cancer cells become strongly dependent on normal genes and cell functions to survive. These genes could thus serve as potential targets to attack tumour growth more efficiently. A gene called mucosa-associated lymphoid tissue l (MALT1), for example, is highly active in lymphoma, a type of blood cancer, and blocking MALT1 causes lymphoma cells to die. MALT1 blockers have been viewed as a promising new treatment for lymphomas.
The researchers now addressed the role of MALT1 in solid tumours, namely glioblastoma. Using data from The Cancer Genome Atlas, a molecular characterization of over 20,000 primary cancers, they revealed that MALT1 levels strongly correlate with patients’ survival in brain cancer – patients with less MALT1 tend to live longer.
Gavard and colleagues then focused their attention on so-called glioblastoma stem cells, a self-renewing subpopulation of cells within the tumour that are likely responsible for cancer recurrence after treatment. They uncovered that targeting MALT1 with MALT1 blockers caused glioblastoma stem cells to undergo a rare form of cellular suicide termed lysosomal cell death in human cell culture experiments. Lysosomes are organelles within the cell that serve as the cells’ digestive system. MALT1 keeps lysosomes low in cancer cells, which is crucial for their survival. Blocking MALT1 leads to an increase in lysosomes, which in turn impairs the cells’ waste disposal system, eventually killing them. This points to the possibility of further exploring MALT1 inhibitors as potential treatment of glioblastoma.
Control of the Homeostasis of Endo-lysosomes by the Paracaspase MALT1 regulates Glioma Cell Survival
The EMBO Journal
Kathryn A. Jacobs, Gwennan André-Grégoire, Clément Maghe, An Thys, Ying Li, Elizabeth Harford-Wright1, Kilian Trillet, Tiphaine Douanne, Carolina Alves Nicolau, Jean-Sébastien Frénel, Nicolas Bidère, and Julie Gavard
DOI: 10.15252/embj.2019102030
http://Read the paper: www.embopress.org/doi/10.15252/embj.2019102030
Criteria of this press release:
Journalists
Biology
transregional, national
Research results
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).